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1. Introduction 
 

Plants are challenged by various environmental stresses during their whole life cycles. 

Accordingly, plants have evolved to cope with these stresses using sophisticated signaling 

systems that quickly convert the extracellular stress stimuli into intracellular responses that allow 

plants to promptly resist the stresses. These defense reactions are strictly controlled by elaborate 

regulatory networks (Jones and Dangl, 2006; Howe and Jander, 2008; Wu and Baldwin, 2010), 

within which, the mitogen-activated protein kinase (MAPK) cascades play essential roles, often 

located downstream of sensors or receptors and transducing extracellular stimuli into intracellular 

responses (Ichimura et al., 2000; Asai et al., 2002; Teige et al., 2004; Meszaros et al., 2006; 

Brader et al., 2007). Typically, a MAPK cascade consists of a three-kinase module that is 

conserved in all eukaryotes. MAPK, the last kinase in the cascade, is activated by the dual 

phosphorylation of Thr and Tyr residues in its kinase catalytic activation loop. This 

phosphorylation is mediated by a MAPK kinase (MAPKK or MEK), which is activated by a 

MAPKK kinase (MAPKKK or MEKK). Following activation, MAPKs mainly regulate gene 

expression by phosphorylation of DNA-binding transcription factors (Hill and Treisman, 1995; 

Karin and Hunter, 1995; Hazzalin and Mahadevan, 2002).  

In plants, MAPKs comprise a relatively large gene family (20, 15, and 21 MAPKs in 

Arabidopsis, rice, and poplar respectively), suggesting that MAPKs may be important for various 

signaling pathways (MAPK group, 2002; Hamel et al., 2006). Consistent with this hypothesis, 

genetic studies have revealed that MAPKs are involved in numerous developmental processes 

and resistance to biotic and abiotic stresses (Zhang and Klessig, 2001; Pedley and Martin, 2005; 

Andreasson and Ellis, 2010; Rodriguez et al., 2010; Wu and Baldwin, 2010). MAPKs play 

critical roles in plant innate immunity to bacterial, oomycete, and fungal pathogens (Zhang and 

Klessig, 2001; Asai et al., 2002; Pedley and Martin, 2005). For example, Arabidopsis AtMPK6 

and AtMPK3 are required for resistance against attack from pathogens as knock-out plants 

lacking AtMPK6 and AtMPK3 activity are highly sensitive to pathogen infection (Desikan et al., 

2001; Asai et al., 2002; Menke et al., 2004; Ren et al., 2008; Pitzschke et al., 2009). Another 

MAPK, AtMPK4 was identified as a negative regulator of plant immunity to pathogens (Petersen 

et al., 2000). mpk4 mutants have highly elevated salicylic acid (SA) levels, which result in greatly 
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increased levels of pathogenesis-related (PR) transcripts. In turn, these mutants are strongly 

resistant to a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst 

DC3000), and a virulent isolate of the oomycete, Peronospora parasitica (Petersen et al., 2000).  

In addition to MAPKs’ roles in resistance to pathogens, recent research has indicated their 

involvement in defense against herbivores (Kandoth et al., 2007; Wu et al., 2007). Following 

herbivore attack, plants activate MAPK signaling and in turn alter phytohormone levels, 

including those of jasmonic acid (JA) and ethylene (Howe et al., 1996; Reymond and Farmer, 

1998; von Dahl et al., 2007), and reshape their transcriptomes and proteomes (Hui et al., 2003; 

Reymond et al., 2004; Giri et al., 2006). The critical roles of JA and JA-Ile signaling in plant-

herbivore interactions have been intensively studied (reviewed in Howe and Jander, 2008; Wu 

and Baldwin, 2010). Transgenic (or mutant) plants that are impaired in JA/JA-Ile biosynthesis or 

signaling have highly attenuated levels of secondary metabolites, which normally function as 

direct and indirect defenses, and thus plants have greatly impaired resistance against herbivores 

(Howe et al., 1996; Reymond et al., 2000; Kessler and Baldwin, 2001; Paschold et al., 2007).  

A growing body of evidence has also indicated the involvement of MAPK signaling in 

plant responses to various abiotic stresses, such as unfavorable temperatures, UV-B, oxidation, 

and drought (Zhang and Klessig, 2001; Holley et al., 2003; Xiong and Yang, 2003; Teige et al., 

2004; Jammes et al., 2009). Located on leaf epidermis, stomata are crucially important in 

controlling rates of CO2 uptake for photosynthesis and to prevent water loss caused by 

transpiration. Thus plants use sophisticated regulatory systems to achieve optimum stomatal 

apertures, which allow them to take up CO2 from the air to supply substrate for photosynthesis 

while minimizing water loss. ABA plays a critical role in controlling stomatal apertures. ABA-

deficient plants or those with impaired ABA signaling are unable to regulate their stomatal 

apertures adaptively and are highly susceptible to drought stress (Iuchi et al., 2001; Desikan et al., 

2004; Kim et al., 2010). As a pore through the epidermal layer into the mesophyll, stomata play 

essential roles in pathogen defense. Usually bacterial pathogens can penetrate into plant tissues 

through stomata or wounds, and ABA signaling is required for plant stomatal closure, which 

prevents pathogens from entering (Melotto et al., 2006). Besides its role in drought- and pathogen 

resistance primarily by mediating stomatal closure (Fan et al., 2004; Melotto et al., 2006; Wang 

and Song, 2008; Sirichandra et al., 2009; Kim et al., 2010), ABA functions in regulation of many 

developmental processes (Barrero et al., 2005; Fujii and Zhu, 2009; Nakashima et al., 2009). 
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Importantly, ABA also plays a critical role in seed dormancy and germination (Finkelstein et al., 

2008). 

Protein kinases are critically important in modulating ABA-induced responses, including 

stomatal closure (Kim et al., 2010). In Arabidopsis, SNF1-related protein kinases (SnRK2s) are 

activated by ABA and mutants having defects in SnRK2s are almost completely insensitive to 

ABA, indicating that they are key components in ABA signaling (Fujii and Zhu, 2009). Four 

calcium-dependent protein kinases (CPKs or CDPKs), AtCPK3, AtCPK6, AtCPK4, and 

AtCPK1, also control stomatal closure in an ABA-dependent manner (Mori et al., 2006; Zhu et 

al., 2007). Arabidopsis stomatal guard cell development and ABA-regulated stomatal closure are 

also regulated by MAPK signaling. Mutant lines of the MAPK kinases, AtMKK4, AtMKK5, 

AtMKK7, and AtMKK9, all show defects in guard cell formation and function (Lampard et al., 

2009) and seedlings of the mpk3 mpk6 double mutant have highly increased guard cells densities 

(Wang et al., 2007). Specifically expressing antisense AtMPK3 in Arabidopsis partially impairs 

ABA- and H2O2-induced guard cell movements (Gudesblat et al., 2007). Similarly, the MAPKs 

AtMPK9 and AtMPK12, which are specifically localized in guard cells, redundantly and 

positively control transpiration rates and stomatal closure in response to ABA and H2O2 

treatments (Jammes et al., 2009). Recently a MAPK phosphatase PP2C5, which directly 

modulates MAPK activity, was also found to be involved in ABA signaling during seeds 

germination and stomatal movements (Brock et al., 2010). 

Nicotiana attenuata Torr. ex Wats. (Solanaceae) is a native tobacco species which grows 

in the Great Basin Desert of Southwest USA (Baldwin, 2001). This diploid, largely selfing plant 

exhibits great morphological and chemical phenotypic plasticity which appears to be adaptive, 

and therefore has been chosen as model system to study plant-herbivore interactions in a native 

ecosystem (Figure 1A). N. attenuata grows in the ‘primordial agricultural’ niche, the immediate 

post-fire environment: dormant seeds germinate synchronously into nitrogen-rich soils in 

response to smoke stimulants originating from fire (Baldwin and Morse, 1994; Lynds and 

Baldwin, 1998) (Figure 1B).  
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Figure 1. Nicotiana attenuata in its natural habitat, 
the Great Basin Desert, Utah, USA. 

(A) Bolting N. attenuata. (B) Bush fire in the Great 
Basin Desert. 

Figure 2. Natural herbivores of N. attenuata. 

(A) Spodoptera littoralis. 

(B) Manduca sexta. 

Photo courtesy: D. Kessler; www.forestryimages.org 
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This growth environment selected for plants with rapid, competitive growth abilities when 

water is available. Herbivores from more than 20 different taxa, from mammalian browsers that 

consume entire plants to intracellular-feeding insects, attack the plants on a variety of spatial 

scales. Amongst the leaf chewing insects, Manduca sexta (tobacco hornworm; Figure 2A), a 

specialist herbivore on solanaceous plants and Spodoptera littoralis (Figure 2B), a generalist 

herbivore, are major defoliators of N. attenuata. 
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N. attenuata recognizes fatty acid-amino acid conjugates (FACs) in the oral secretions 

(OS) of the specialist herbivore Manduca sexta, which are introduced into wounds during 

feeding, and thereafter rapidly and highly activates MAPKs, including the salicylic acid-induced 

protein kinase (SIPK; an orthologue of AtMPK6) and the wound-induced protein kinase (WIPK; 

an orthologue of AtMPK3) (Wu et al., 2007). Silencing SIPK and WIPK in N. attenuata and their 

homologues in tomato compromises herbivory-induced JA bursts, which in turn results in 

attenuated levels of defensive secondary metabolites (Kandoth et al., 2007; Wu et al., 2007; 

Meldau et al., 2009). These metabolites include nicotine, trypsin protease inhibitor (TPI). 

phenolics, flavonoids, phenolic putrescine conjugates, and diterpene glycosides (Van Dam et al., 

2001; Keinanen et al., 2001; Heiling et al., 2010), some of which are known to influence 

herbivore growth. (Glawe et al., 2003; Roda et al., 2004; Jassbi et al., 2008; Kaur et al., 2010). In 

addition to direct defenses, JA induces the emission of volatile organic compounds (VOCs) 

which function as indirect defenses by attracting predatory bugs to M. sexta eggs and larvae and 

thus dramatically increasing their mortality rate (Kessler and Baldwin, 2001). The release of 

some VOCs also decreases oviposition rates from adult moths (Kessler and Baldwin, 2001). 

These ovipositing adults may use the volatile release to identify host plants lacking predators and 

to avoid plants on which predators are already present.  

We are starting to understand the complex mechanisms by which plants can deal with the 

great variety of different biotic and abiotic stresses. However, very little is known about the 

function of MAPKs other than SIPK and WIPK in resistance mechanisms against herbivore and 

pathogen attack. Moreover, although much knowledge has been obtained from genetic studies in 

Arabidopsis, still little is known about how other plant species regulate stomatal apertures when 

the plants are challenged by drought and bacterial pathogens. In Nicotiana tabacum, knocking 

down the transcript levels of NtMPK4, a MAPK whose sequence is highly similar to Arabidopsis 

AtMPK4 and AtMPK11, leads to moderately reduced plant sizes, increased transpiration rates, 

and impaired stomatal responses to CO2 and ozone treatments; however, NtMPK4-silenced 

tobacco plants showed no defect in ABA-induced closure movement of the guard cells (Gomi et 

al., 2005; Marten et al., 2008). Furthermore, NtMPK4 is rapidly activated by wounding and 

NtMPK4-silenced tobacco plants show attenuated levels of proteinase inhibitor-II (PI-II) 

transcript levels after wounding (Gomi et al., 2005), suggesting a putative role of this MAPK in 

plants defense against herbivores. 
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In this study, the function of the orthologue of NtMPK4 in N. attenuata, NaMPK4, was 

investigated in plant growth and fitness and in defense responses against drought stress, 

herbivores and pathogens. NaMPK4-silenced N. attenuata plants are moderately smaller under 

optimal growth conditions and produce more seeds than do wild-type (WT) plants. They exhibit 

highly elevated photosynthetic rates, which are correlated with their enhanced transpiration rates 

and delayed senescence. Importantly, different from the function of NtMPK4 in tobacco, 

NaMPK4 is required for ABA- and H2O2-mediated stomatal closure after drought stress and 

NaMPK4 promotes ABA-, salt-, and methyl jasmonate (MeJA)-induced germination inhibition. 

Interestingly, and in contrast to SIPK and WIPK, NaMPK4 negatively mediates resistance to the 

specialist insect M. sexta in a JA-independent pathway. Furthermore, we also demonstrate that 

NaMPK4 plays a critical role in defending plants against bacterial pathogens (Pseudomonas 

syringae pv. tomato DC3000) in intercellular spaces in a salicylic acid (SA)-independent manner 

and very likely in stomata. These data demonstrate the multifaceted role of NaMPK4 in 

regulating developmental processes as well as defense responses against biotic and abiotic 

stresses.
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2. Methods 
 

Plant growth and sample treatments 

Nicotiana attenuata (Solanaceae) seeds were from a line maintained in our laboratory that 

was originally collected in Utah (USA) and inbred for 30 generations in the glasshouse. Seed 

germination and plant cultivation followed Krügel et al. (2002). Four- to 5-week-old plants were 

used for all experiments except for growth and seed number measurements. 

Homozygous mpk11 (SALK_049352C) seeds were obtained from the European 

Arabidopsis Stock Center (http://arabidopsis.info/) and the homozygosity was confirmed by PCR 

(Supplemental Table 1). Arabidopsis Col-0 and mpk11 were directly germinated in soil and were 

cultivated under the long-day conditions (16 h photoperiod, 65% relative humidity, 21 oC). 

For the collection of M. sexta oral secretions (OS), larvae were reared on N. attenuata WT 

plants until the third to fifth instars. OS were collected on ice as described in Roda et al. (2004) 

and stored under nitrogen at -20 °C. To obtain FAC-free OS, 400 µL of OS were run through six 

ion-exchange columns containing 400 mg of the basic anion-exchange resin Amberlite IRA-400 

(Sigma). FAC A (N-linoenoyl-L-Gln), the major FAC constituent of M. sexta OS (Halitschke et 

al., 2001), was dissolved in 0.005% (v/v) Tween 20 at a concentration of 27.6 ng/µL, which is 

similar to its concentration in 1/5 diluted OS (Halitschke et al., 2001). For simulated herbivory 

treatment, leaves were wounded with a pattern wheel and herbivore oral secretions (OS) (20 µL 

of 1/5 diluted OS) were immediately rubbed onto each wounded leaf (W+OS); for wounding 

treatment, leaves were wounded with a pattern wheel, and 20 µL of water were rubbed onto each 

leaf (W+W). For methyl jasmonate (MeJA) treatments, MeJA was dissolved in heat-liquefied 

lanolin at a concentration of 5 mg mL-1 and 20 µL of the paste were applied to the base of a leaf 

using a small spatula; 20 µL of pure lanolin were applied as controls.  

Generation of transformed plants 

To create NaMPK4-silenced plants, a 344 bp fragment of the NaMPK4 gene was inserted 

into the pRESC5 transformation vector in an inverted repeat orientation (primer sequences are 

listed in Supplemental Table 1) to form pRESC5-MPK4. Agrobacterium tumefaciens harboring 

this vector was used for transforming N. attenuata (Krügel et al., 2002). The number of T-DNA 
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insertions was determined by Southern hybridization of genomic DNA using a PCR fragment of 

the hygromycin phosphotransferase (hptII) gene as a probe. Two T2 lines with single T-DNA 

insertions were identified and used in subsequent experiments. Crossing irCOI1, NahG, and 

irNPR1 with irNaMPK4 plants was done by removing anthers from flowers of irCOI1, NahG and 

irNPR1 plants before pollen maturation and pollinating the stigmas with pollen from irNaMPK4 

plants. The transcript levels of COI1, NahG, NPR1, and NaMPK4 were examined in the 

respective heterozygote descendents to confirm successful crossing.  

Southern blotting 

Genomic DNA samples were extracted from young leaf tissue using the CTAB method 

(Doyle and Doyle 1987). After overnight digestion with various endonucleases (Fermentas, 

Ontario, Canada), 6 μg of each digested DNA was loaded onto a 1% agarose gel and separated in 

TAE buffer. After being Southern blotted onto a GeneScreen Plus Hybridization Transfer 

membrane (PerkinElmer Life and Analytical Sciences), DNA was subsequently immobilized by 

UV crosslinking. Ten ng of DNA probe was labeled with α-32P-dCTP (PerkinElmer Life and 

Analytical Sciences) using a random primer labeling kit (Amershambiosciences, Uppsala, 

Sweden), followed by purification through Probequant G-50 spin columns 

(Amershambiosciences). Membranes were prehybridized with ULTRAhyb hybridization buffer 

(Ambion, Austin, TX) for 1 h. Radioactive labeled probes were denatured at 95 °C for 5 min and 

quickly chilled on ice for another 5min before being added to the buffer. After overnight 

hybridization, membranes were washed at 62 °C once with 2 × SSC, 0.1% SDS, and three times 

with 0.1 × SSC, 0.1% SDS. Imaging was conducted on a FLA-3000 Phosphorimage system 

(Fujifilm Fuji Photo Film Europe, Düsseldorf, Germany). 

RNA extraction and quantitative real-time PCR (qPCR) 

Total RNA was extracted from ground leaf samples using TRIzol reagent (Invitrogen) 

following the manufacturer’s instructions. For qPCR analysis, 5 replicated biological samples 

were used. 0.5 µg of total RNA sample was reverse-transcribed with oligo(dT) and Superscript II 

reverse transcriptase (Invitrogen). qPCR was performed on an ABI PRISM 7700 sequence 

detection system (Applied Biosystems) using qPCR Core kits (Eurogentec). An N. attenuata 

actin2 gene was employed as the internal standard for normalizing cDNA concentration 

variations. Sequences of primers used for qPCR are listed in Supplemental Table 1. 
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Measurement of photosynthetic rates, transpiration rates, stomatal conductance, 

chlorophyll contents, and quantification of rates of water losses in detached leaves 

Photosynthetic rates, transpiration values, and stomatal conductance were measured using 

a LI-COR 6400 Portable Photosynthesis System (Li-COR Biosciences). A light-responsive curve 

of photosynthesis was generated from at least 5 replicated plants, each at ambient CO2 

concentration (400 µmol mol-1) and 6 different light intensities: 0, 200, 500, 1,000, 1500, and 

2000 µmol m-2 s-1. Photosynthesis rates were also measured at 6 different CO2 concentrations, 0, 

200, 400, 600, 800, 1000 µmol mol-1 at the light irradiance of 1200 µmol-2 s-1, using at least 5 

replicated plants for each CO2 concentration. Chlorophyll contents were determined using a 

portable chlorophyll meter (Minolta SPAD-502, Konica Minolta). Leaves at -1 position when 

plants were 30 days old were marked and used for all chlorophyll content measurements. 

To determine darkness-induced changes in transpiration rates, rosette-stage plants were 

transferred to growth chambers (Snijders Scientific) and were kept for 4 h at 26 °C, 65% 

humidity, and under light intensity of 300 µmol m-2 s-1. Immediately after ights were switched 

off, the transpiration rates were measured with a LI-COR 6400 Portable Photosynthesis System. 

For measurements of water loss rates in detached leaves, under ambient glasshouse 

conditions excised leaves were placed on a bench with abaxial sides facing up, and their masses 

were measured after various times. For ABA treatment, detached leaves were first incubated in a 

20 µM ABA solution for 8 h prior the air drying treatment; leaves incubated in water (0.02% 

ethanol, the solvent for the 20 µM ABA) served as controls. Water losses were expressed as the 

percentage of initial fresh masses after excision. 

Stomatal assays in epidermal peels 

 For all assays of stomatal apertures, fully expanded young leaves from 4-5-weels-old 

plants were used. Epidermal strips were peeled from the abaxial side of the leaves and were 

immediately placed in opening solution (50 mM KCl, 10 mM MES-KOH, pH 6.15) with the 

adaxial side upward. Stomatal opening was induced with white light illumination (300 µmol m-2 

s-1) for 3 h. The epidermal strips were examined under a microscope (Leica LMD6000) equipped 

with a CCD camera and a workstation to determine the apertures of the stomatal pores at 

different times after application of 2 µM ABA or 100 µM H2O2 (Sigma). 
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Analysis of ABA, SA, JA, and JA-Ile concentrations 

One milliliter of ethyl acetate spiked with 200 ng of D2-JA and 40 ng of D6-ABA, 13C6-

JA-Ile, and D4-SA, the internal standards for JA, ABA, JA-Ile, and SA, respectively, was added 

to each briefly crushed leaf sample (~ 150 mg). Samples were then ground on a FastPrep 

homogenizer (Thermo Electron). After being centrifuged at 16.100 g for 10 min at 4 ºC, 

supernatants were transferred to fresh tubes and evaporated to dryness on a vacuum concentrator 

(Eppendorf). Each residue was resuspended in 0.5 mL of 70% methanol (v/v) and centrifuged to 

remove particles. The supernatants were analyzed on a HPLC-MS/MS (1200L LC-MS system, 

Varian) (Wu et al., 2007). 

Pathogen assays 

 Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was grown at 28 °C in LB 

(Luria-Bertani) liquid medium with antibiotics until OD600 was ~ 0.6. After 10 min centrifugation 

at 3000 g, the supernatant was discarded, and cells were resuspended to O.D. = 0.8 (~ 4 × 108 

cfu/mL) in a 10 mM MgCl2 solution without any detergents. To quantify stomata closure in 

response to Pst DC3000, leaves were dipped into the bacterial solution and transpiration rates 

were measured using a LI-COR 6400 Portable Photosynthesis System (Li-COR Biosciences). To 

evaluate pathogen growth, leaves were surface sterilized [70% ethanol for 1 min, sodium 

hypochlorite solution (3% available Cl2) containing 0.005% Tween-20 for 3 min, then rinsed with 

sterile water] and leaf discs (4 cm2) were ground in 0.3 mL of sterile water, and a series of 

dilutions of each leaf extract were spread on LB agar plates containing antibiotics. Plates were 

incubated at 28 oC until colonies in appropriate sizes appeared and colonies number were 

counted.  

To examine the growth of intercellularly located Pst DC3000, leaves were inoculated with 

a Pst DC3000 suspension of O.D. 0.001 using 1 mL syringes. Mock inoculation was done by 

infiltrating 10 mM MgCl2 solution. Pathogen growth was quantified using above mentioned 

method without sterilizing the surfaces. 

Salt treatment, germination and seedling root elongation assay 

 To examine plant resistance to salt, rosette WT and irNaMPK4 plants were grown in 0.5-

L pots. When plants reached rosette stage (30 days after germination), 80 mL of 50, 100, or 200 

mM NaCl solution were given to plants each day. 
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 To avoid other factors that affect seed germination rates, N. attenuata WT and irNaMPK4 

plants were grown simultaneously. Mature progeny seeds were harvested at the same time and 

used for subsequent phenotypic comparisons. Seeds were sown on 0.6% agar media containing 1 

× Gamborg’s B5 (GB5) salts (Duchefa) and various chemicals as specified in the Results section, 

and then incubated at 26°C with a 16-hr-light photoperiod. Germination was quantified by radicle 

emergence from triplicates with 100 seeds each. 

 Seeds were germinated on 0.6% agar medium containing 1 × GB5. Five days after 

sowing, when roots were about 3-5 mm, seedlings were transferred to the same medium with 

different chemicals described in the Results section. Seedlings were grown vertically at 26°C 

with a 16-hr-light photoperiod. 

In-gel kinase activity assay and immune-complex kinase activity assay 

Leaf tissue pooled from 4 replicate leaves was crushed in liquid nitrogen, and 200 µL of 

protein extraction buffer [100 mM HEPES, pH 7.5, 5 mM EDTA, 5 mM EGTA, 10 mM Na3VO4, 

10 mM NaF, 50 mM β-glycerolphosphate, 1 mM phenylmethylsulfonyl floride, 10% glycerol, 

and EDTA-free proteinase inhibitor cocktail (Roche Diagnostics)] was added to ~ 100 mg of 

tissue. Leaf tissue was then completely suspended by vortexing. After being centrifuged at 4°C at 

16.100 g for 20 min, supernatants were transferred to fresh tubes. Protein concentrations were 

measured using a Bio-Rad protein assay kit with BSA as a standard. MAPK in-gel kinase activity 

assay were done following Zhang & Klessig (1997) using myelin basic protein (MBP) as the 

substrate. Gel images were obtained on an FLA-3000 phosphor imager system (Fujifilm). 

For immune-complex kinase activity assays we followed Zhang & Liu (2001) with minor 

modifications. Protein from pooled samples of 4 replicated leaves was extracted with 

immunoprecipitation buffer [20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 1 mM Na3VO4, 1 mM NaF, 10 mM β-glycerophosphate, EDTA-free proteinase inhibitor 

cocktail (Roche Diagnostics), and 0.1% Tween 20]. Protein extracts (100 µg in 150 µL volume) 

were incubated with 2 µg of anti-NtMPK4 antibody at 4 °C for 1.5 h on a rocker. 20 µL (packed 

volume) of protein A-agarose (Sigma) were washed in immunoprecipitation buffer and was then 

added to the reaction. After another 2 h of incubation on a rocker at 4 °C, agarose bead-protein 

complexes were washed twice with 0.5 mL of immunoprecipitation buffer, and twice with 0.5 

mL of kinase reaction buffer (25 mM Tris-HCl, pH 7.5, 2 mM EGTA, 12 mM MgCl2, 1 mM 
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DTT, and 0.1mM Na3VO4). Kinase activity in the complex was assayed at room temperature for 

20 min in 25 µL of kinase reaction buffer containing 0.1 mg mL-1 MBP, 10 µM ATP, and 3 µCi 

of γ-32P-ATP. The reaction was stopped by the addition of SDS-PAGE sample loading buffer. 

After electrophoresis on a 12% SDS-polyacrylamide gel, the phosphorylated MBP was visualized 

on an FLA-3000 phosphor imager system (Fujifilm). 

Immunoblotting analysis 

 Four biologically replicated samples were pooled for protein extraction using the protein 

extraction buffer. Protein samples (15 µg) were separated in a 10% SDS-PAGE gel and 

electrotransferred to a PVDF membrane (Amersham). A WesternBreeze Chemiluminescent 

Immunodetection Kit (Invitrogen) was used to detect NaMPK4 protein. The primary antibody, 

anti-NtMPK4, was 1:2000 diluted for immunoblotting analysis. For examining equal loading, a 

duplicated gel was run at the same time and was subsequently stained using the GelCode Blue 

Safe Stain reagent (Thermo Scientific) to visualize proteins. 

Herbivore growth bioassays 

Freshly hatched M. sexta larvae were placed on 30 replicated plants of each genotype (1 

larva/plant). To compare herbivore growth rates on WT and irNaMPK4 plants, larvae were 

weighed on day 4, 7, 9 and 11; for the comparison of herbivore growth on WT, irNaMPK4, 

irCOI1 and 119×irCOI1 plants, larval mass on day 4, 6, and 8 was recorded. In the experiment 

wherein M. sexta larvae were transferred to non-treated plants after every 24 h to minimize JA-

induced defenses, 9 WT and irNaMPK4 plants were infested with 18 M. sexta larvae (2 

larvae/plant). After each 24 h, all larvae were moved to new untreated plants of the same 

genotype. The larval mass was recorded every other day. The amount of leaf material consumed 

after the first day of neonate feeding was estimated by scanning the infested leaves to obtain 

digital photos and calculating the consumed areas with SigmaScan Pro software (Statcon). To 

measure S. littoralis performance, freshly hatched larvae were grown on artificial diet for 10 d 

and then placed on 20 replicate plants of each genotype. Larval mass gain (means ± SE) was 

measured 3, 5, 7, and 9 days after transfer to the plants. For the collection of OS, larvae were 

reared on N. attenuata wild-type plants until the third to fifth instar. OS was collected on ice as 

described in Roda et al. (2004). 
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FAC Analysis 

Five microliters of M. sexta and S. littoralis OS were homogenized in 95 mL methanol 

spiked with 10 ng of N-cis-10-nonadecenoic acid-L-Gln (C19:1-Gln) used as internal standard. 

Extracts were then centrifuged to remove any particulate matter. Five-microliter aliquots of these 

solutions were analyzed by liquid chromatography-tandem mass spectrometry using the 

aforementioned LC settings. Identification of major FACs was confirmed by comparison to 

authentic standards, as described in Halitschke et al. (2001) and Diezel et al. (2009). 

Analyses of herbivore defense-related secondary metabolites 

Trypsin proteinase inhibitor activity was analyzed with a radial diffusion assay described 

by van Dam et al. (2001). The accumulation of the direct defenses, nicotine, caffeoylputrescine, 

and diterpene glycosides were analyzed in samples harvested 3 days after W+W, W+OS, lanolin, 

or MeJA treatment using a HPLC method described in Keinanen et al. (2001). To quantify 

W+W- and W+OS-elicited green leaf volatile emissions, treated leaves were immediately 

enclosed between two 50 mL food-quality plastic containers (Huhtamaki) secured with miniature 

claw-style hair clips. Ambient air was pulled through the collection chamber and a glass tube 

(ARS, Inc.) packed with glass wool and 20 mg of Super Q (Alltech). After 3 h of collection, traps 

were spiked with 400 ng of tetralin (Sigma-Aldrich) as an internal standard and eluted with 250 

μL of dichloromethane. For collection of MeJA- and W+OS-elicited terpene emissions, 24 h after 

treatment emitted volatiles were collected similarly for 8 h. The eluted compounds were analyzed 

on a GC-MS (GC-MS 4000, Varian).  

Analysis of ethylene emissions 

Six replicated measurements were used to quantify ethylene production in WT and 

irNaMPK4 plants. Three leaves were treated with W+OS and immediately afterward sealed in a 

three-neck 250-mL flask and kept in the greenhouse for 5 h. The ethylene concentration in the 

headspace was measured with a photoacoustic laser spectrometer (Invivo). 

Analysis of starch levels 

Starch levels were estimated in 10 replicate fully expanded rosette leaves from WT and 

both irNaMPK4 lines using the Anthrone Method. Soluble sugars were removed with 80% 
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ethanol and after extraction with perchloric acid; samples were boiled for 8 minutes with 

anthrone reagent (100mg anthrone in 100mL 95% H2SO4). 

Statistical analysis 

Data were analyzed by analysis of variance (ANOVA) or unpaired t-test using StatView, 

version 5.0 (SAS Institute). 

Phylogeny analysis 

 Protein sequences were retrieved from the GenBank and were aligned using the Clustal W 

algorithm embedded in the MegAlign software (DNASTAR Lasergene 8). The protein tree was 

constructed by MEGA 4 software (1000 replications) (Tamura et al., 2007).  

The sequence of NaMPK4 has been deposited in the GenBank under accession number 

HQ236013.
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3. Results 
 

3.1. Silencing NaMPK4 in N. attenuata 
Using the sequence information of tobacco NtMPK4 (Gomi et al., 2005), we cloned 

NaMPK4 in N. attenuata (GenBank accession number: HQ236013). Phylogenetic analysis 

indicated that NaMPK4 clustered most closely with NtMPK4, AtMPK4, and AtMPK11 and was 

more distantly related to AtMPK12 (Figure 3A). It showed 98% sequence identity with N. 

tabacum NtMPK4 and 87, 85, and 77% similarity to AtMPK4, AtMPK11, and AtMPK12, 

respectively (Figure 3B). Furthermore, searching GenBank of N. tabacum EST database and 

analyzing a N. attenuata transcriptome database prepared by 454 sequencing did not reveal any 

further close homologue of NaMPK4 in N. tabacum and N. attenuata. Quantitative real-time PCR 

(qPCR) analysis indicated that NaMPK4 is expressed in all organs examined, i.e. roots, stems, 

flowers, and leaves (Figure 3C).  
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Figure 3. NaMPK4 is closely related to Arabidopsis AtMPK4, AtMPK11, AtMPK12, and 
tobacco NtMPK4 and is expressed in various organs.  

(A) Phylogenetic relationship of MAPK proteins. Protein sequences were retrieved from 
GenBank and aligned using the Clustal W method. Non-rooted Neighbor-Joining tree and 
bootstrap values were constructed with the MEGA 4 software. NaMPK4 is highlighted in grey. 
(B) Alignment of the protein sequences of NaMPK4, NtMPK4, AtMPK4, AtMPK11, and 
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AtMPK12. Protein sequences were deduced from retrieved mRNA sequences of NaMPK4, 
NtMPK4, AtMPK4, AtMPK11, and AtMPK12. Sequences were aligned using the Clustal W 
algorithm. Black background indicates amino acid residues that are different from the consensus 
sequence. (C) NaMPK4 transcript levels in root, stem, leaf, and flower of N. attenuata. 

 

A 344 bp fragment of NaMPK4 was cloned into a binary vector pRESC5 in an inverted 

repeat fashion, and Agrobacterium carrying this vector was further used to transform N. attenuata 

to obtain NaMPK4-silenced plants (irNaMPK4 plants) (Krügel et al., 2002). Several 

independently transformed lines of irNaMPK4 plants which harbor single transgene insertion 

were identified by Southern blotting (Figure 4A), and the transcript levels of NaMPK4 in these 

lines were analyzed by qPCR. Two lines, line 119 and 163, whose transcript levels of NaMPK4 

were 9.8% and 5.4% of those of wild-type (WT) plants (Figure 4B), were selected for further 

studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Southern blotting analysis and NaMPK4 transcript accumulation in irNaMPK4 plants. 

(A) Genomic DNA was digested with EcoRI (lane E), DraI (lane D) and HindIII (lane H) and 
Southern-blotted onto nylon membranes. The membrane was hybridized with a hygromycin-
specific probe. (B) Transcript levels (mean ± SE; N = 5) of NaMPK4 were analyzed in untreated 
wild-type (WT) and irNaMPK4 plants (line 119 and 163) by qPCR. 
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3.2. NaMPK4 and plant development 

3.2.1. NaMPK4 is involved in plant growth and senescence processes 

In N. tabacum, NtMPK4-silenced plants have somewhat retarded growth, although not as 

severe as that of Arabidopsis mpk4 mutant (Gomi et al., 2005). To examine the function of 

NaMPK4 in mediating N. attenuata’s development, we measured rosette size and stalk length 

until plants finished their reproductive growth. The average rosette size of irNaMPK4 plants was 

only slightly reduced [95% of that of WT plants (P119 < 0.0005 and P163 = 0.0015)] 38 days after 

germination, when plants had slightly elongated stems; greater difference appeared at later 

developmental stages: by day 57, rosette sizes of irNaMPK4 lines were 85% of those of WT 

plants (Figure 5A). Stalk lengths of irNaMPK4 plants were also reduced. At the end of 

reproductive growth (83 days after germination), irNaMPK4 plants were 16% shorter than WT 

plants (P119, 163 < 0.001) (Figure 5B). All these changes resulted in a net 27% reduction in above-

ground biomass (Figure 5C). Arabidopsis knock-out mutant mpk4, which is a close homologue of 

NaMPK4, shows severely impaired growth, and over-accumulation of SA partly account for its 

arrested development (Petersen et al., 2000). However, the contents of SA irNaMPK4 were not 

higher than those of WT plants in all examined developmental stages (Figure 5D). Importantly, 

irNaMPK4 plants exhibited elevated chlorophyll contents and delayed senescence. In the early 

rosette stage (30-day old), irNaMPK4 plants had slightly more chlorophyll than did WT plants 

(Figure 5E). This difference became more pronounced at the later developmental stages when the 

decline in chlorophyll contents in WT plants was more rapid than that of irNaMPK4 plants: by 

day 56, irNaMPK4 plants had 30% more chlorophyll in their leaves than did WT plants and 

showed an obvious slower senescence (Figure 5E). Thus NaMPK4 appears to negatively regulate 

plant senescence. 
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Figure 5. Silencing NaMPK4 decreases plant stature and delays senescence. 

All plants were germinated in Petri dishes to synchronize germination, 10 days after germination 
plants were transferred to soil. (A) Rosette sizes of wild-type (WT) and irNaMPK4 plants (line 
119 and 163). Rosette diameters were measured on 30 individual plants from each genotype. 
Inset depicts rosette-stage WT and irNaMPK4 plants (30 days after germination). (B) Stalk 
length of WT and irNaMPK4 plants (line 119 and 163). Data were obtained from 30 individual 
plants from WT, 119, and 163. Inset depicts plants at flowering stage (55 days after germination). 
(C) Silencing NaMPK4 reduces plant above-ground biomass. Wild-type (WT) and irNaMPK4 
plants (line 119 and 163) were grown in a glasshouse for 120 days, when they finished their 
reproductive stage. Plant shoots were harvested and dried for 3 days in an 80 °C oven, and the 
dry mass of samples was measured (N=15; mean ± SE). (D) SA levels in rosette leaves of 8 wild-
type (WT) and irNaMPK4 plants (lines 119 and 163) at rosette stage (30 days old), bolting stage 
(40 days old), and flowering stage (50 days old). (E) Relative chlorophyll contents (AU: arbitrary 
units) of wild-type (WT) and irNaMPK4 (lines 119 and 163) plants. Values (mean ± SE) were 
obtained from the rosette leaves at an identical leaf position (+1 position) of 10 replicated plants. 
Inset depicts WT and irNaMPK4 rosette leaves 56 days after germination. Note that leaves of 
irNaMPK4 plants are greener due to their higher chlorophyll contents. Asterisks indicate 
significant differences between WT and irNaMPK4 plants (t-test; *, P < 0.05;**, P < 0.01; ***, P 
< 0.001). 

 

3.2.2. NaMPK4 controls photosynthetic rates and fitness under glasshouse conditions 

In N. tabacum, silencing NtMPK4 leads to enlarged stomata, increased stomatal 

conductance, and impaired stomatal closure responses to ozone and elevated CO2 concentrations 

(Gomi et al., 2005; Marten et al., 2008). Consistently, the stomatal conductance of irNaMPK4 

plants was 2 times greater than that of WT plants (Figure 6A). As expected, irNaMPK4 plants 

had higher photosynthetic rates than WT when plants were supplied with increasing 

concentrations of CO2 (Figure 6B inset). To confirm that these differences were only attributed to 

changes in stomatal conductance and not caused by, for instance, the amount of RuBPCase and it 

Vmax, the photosynthesis rates of WT and irNaMPK4 plants were blotted against the intracellular 

CO2 levels (Ci) (Figure 6B). The obtained A/Ci slopes are almost identical for WT and both 

silenced lines but differ at higher CO2 levels, most likely because of the higher chlorophyll 

content and thus increased photosynthetic capacity of irNaMPK4 plants. At the rosette stage (30 

days after germination), when irNaMPK4 plants had only slightly higher chlorophyll contents 

than did WT, irNaMPK4 plants showed greater photosynthetic rates as the light intensity 

increased under ambient CO2 concentration (400 µmol mol-1) (Figure 6C). Fifty-six days after 

germination, when plants produced their first seed capsules and the differences in chlorophyll 

contents between irNaMPK4 and WT plants were starker (Figure 5D), irNaMPK4 plants had  
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Figure 6. Silencing NaMPK4 increases stomatal conductance, photosynthetic rates, and 
reproductive output. 

Wild-type (WT) and irNaMPK4 (line 119 and 163) plants were grown concurrently. (A) Stomatal 
conductance (mean ± SE; N = 10) were measured from leaves at +1 positions of 30 day-old 
plants. (B) Photosynthetic rates (mean ± SE; N = 6) of plants supplied with different CO2 
concentrations (0, 200, 400, 600, 800, and 1000 µmol mol-1) under the light irradiance of 1200 
µmol-2 s-1; values are photosynthetic rates relative to intracellular CO2 concentration; inset: 
photosynthesis rates relative to CO2 concentrations in the sample cell. (C) and (D) Photosynthetic 
rates (mean ± SE; N = 7) are higher in irNaMPK4 plants than in WT plants under the ambient 
CO2 concentration. Plants were supplied with indicated light intensities and with ambient CO2 
concentration (400 µmol mol-1), and 7 replicate plants were used to obtain the mean 
photosynthetic rates (± SE) in 30 day-old (C) and 56 day-old plants (D). (E) and (F) Silencing 
NaMPK4 increases the number (mean ± SE; N = 15) of flowers (E) and seed capsules (F). (G) 
Seed numbers (mean ± SE) per capsule of WT and irNaMPK4 plants. Seeds in 16 capsules of 
WT and irNaMPK4 lines (65 day-old) were counted. Asterisks indicate significant differences 
between WT and irNaMPK4 plants (t-test; *, P < 0.05; **, P < 0.01; ***, P < 0.001). 

 

about 1 fold higher photosynthetic rates than did WT plants under almost all light intensities 

(Figure 6D). We conclude that silencing NaMPK4 enhances the levels of photosynthesis activity 

in N. attenuata, especially at later stages in development. 

Photosynthetic rates are often associated with increased biomass or seed yield (Long et 

al., 2006). To test whether the elevated photosynthetic rates were translated into greater 

reproductive output in NaMPK4-silenced plants, we examined the numbers of flowers and seed 

capsules produced in irNaMPK4 plants as well as the number of seeds per capsule. While the 

date of appearance of the first flower was similar and WT and irNaMPK4 plants had similar 

number of flowers in their early flowering stages, irNaMPK4 plants produced considerably more 

flowers (28% more) 60 days after germination (Figure 6E). Consistently, 20% higher total 

capsule numbers were observed in irNaMPK4 plants than in WT plants (Figure 6F). In addition, 

the number of seeds produced in the first capsules increased 20 to 35% in line 119 and 163, 

respectively (Figure 6G). Germination assays indicated identical viability between WT and 

irNaMPK4 seeds (data not shown). Therefore, silencing NaMPK4 leads to considerably 

augmented photosynthetic rates and seed production under glasshouse conditions. 
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3.3. NaMPK4 regulates plants responses to abiotic stress 

3.3.1. irNaMPK4 plants have highly impaired ABA-, H2O2-, and dark-induced stomatal 

closure responses 

The highly increased stomatal conductance in irNaMPK4 suggested that NaMPK4 may be 

involved in the regulation of guard cell movement. To test this scenario, the response of 

irNaMPK4 plants to drought stress was examined.  

Firstly, leaves were excised from well watered irNaMPK4 and WT and their masses were 

recorded over time. A rapid water loss was seen in WT leaves; however, by 50 min the masses of 

WT leaves were 17% reduced and similar masses were found even 3 h after excision, indicating 

that WT leaves closed their stomata in response to the initial water loss (Figure 7A). In contrast, 

irNaMPK4 leaves showed a more rapid decline of their masses: by 50 min water loss reached 

30% and by 3 h these leaves had more than 40% water loss (Figure 7A). Given the critical role of 

ABA in stomatal closure response, the contents of ABA were measured in these detached leaves. 

No significant differences were found in freshly detached leaves [210 ng/g fresh mass (FM)]; 

however, in agreement with the degrees of water loss, after 1 h ABA contents in WT and 

irNaMPK4 leaves increased to 370 and 500 ng/g FM and by 3 h, 2300 ng/g FM ABA were seen 

in WT leaves and irNaMPK4 leaves had almost 1 fold higher amount of ABA (4000 ng/g FM) 

(Figure 7A). Furthermore, the ability to conserve water on a level of whole plant was examined. 

Plants were subjected to drought treatment by keeping plants under normal glasshouse conditions 

but without watering. Leaf turgor and ABA contents were monitored over time. One day after 

onset of drought treatment, neither WT nor irNaMPK4 showed an obvious wilting phenotype, but 

the ABA levels in irNaMPK4 increased 3 fold (1078 ng/g FM), whereas ABA contents in WT 

showed almost no changes (294 ng/g FM) (Figure 7B). By day 2, WT plants had relatively 

normal turgor, but irNaMPK4 were strongly wilted; consistently, ABA contents reached 920 ng/g 

FM in WT and 5200 ng/g FM of ABA were detected in irNaMPK4 (Figure 7B). 

These data indicate that irNaMPK4 plants have normal accumulations of ABA in 

response to drought stress, but very likely NaMPK4 is required for ABA-induced stomatal 

closure. To further test this hypothesis, excised leaves of WT and irNaMPK4 were incubated in a 

20 µM (a concentration that is close to the endogenous ABA levels in highly dehydrated leaves) 

ABA solution for 8 h and leaves were then were allowed to dry under ambient conditions. In line  
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Figure 7. irNaMPK4 plants are highly susceptible to drought stress. 

(A) Detached irNaMPK4 (lines 119 and 163) leaves loose water faster and accumulate more 
ABA than do detached wild-type (WT) leaves. WT and irNaMPK4 leaves were detached from 
plants and were kept abaxial sides up under the glasshouse conditions; the masses were recorded 
over time to calculate the percentages of transpirational water loss (left panel) and ABA contents 
(right panel) were quantified in similarly treated samples. All data represent mean ± SE (N = 8). 
(B) irNaMPK4 plants dehydrate faster and show higher ABA levels than do WT, after being 
deprived of water. Upper left panel: well-watered control plants; lower left panel: 2 days after 
plants were deprived of watering; right panel: ABA contents (mean ± SE; N = 8) in watering-
deprived WT and irNaMPK4 plants. (C) Exogenously applying ABA to detached irNaMPK4 
leaves only partially recovers its stomatal closure response to dehydration. Detached leaves of 
wild-type (WT) and irNaMPK4 (lines 119 and 163) plants were incubated in water containing 
ABA (20 μM) for 8 h. The water loss from 10 detached leaves was measured. Values are means ± 
SE. The experiment was repeated twice with similar results. FM = fresh mass. 

 

with our hypothesis, exogenously applied ABA somewhat inhibited water loss from both WT and 

irNaMPK4 leaves; however, ABA treatment did not reduce the transpiration levels of irNaMPK4 

leaves to those of WT (Figure 7C).  

The closure response of stomata on WT and irNaMPK4 leaves was further measured 

using epidermal peels; this technique has been widely used in studying stomatal responses. 

Similar to the stomata in tobacco with defect in NtMPK4, irNaMPK4 have somewhat enlarged 

stomatal size and when not treated with ABA, the guard cells of irNaMPK4 showed greater 

apertures than did WT (Figure 8A and 8B). Importantly, fifteen minutes after application of 2 µM 

ABA, stomatal apertures of WT epidermal peels decreased 67%, while apertures of irNaMPK4 

stomata only reduced 20% even after 1 h (Figure 8A and 8B). In guard cells, ABA induces the 

accumulation of H2O2, which is produced by guard cell-located NADPH oxidases; the increased 

level of H2O2 is essential in the signaling pathway that regulates the closure response of stomata 

(Kwak et al., 2003; Desikan et al., 2004; Wang and Song, 2008; Kim et al., 2010). 

To further dissect the function of NaMPK4 in ABA signaling, the epidermal peels from 

WT and irNaMPK4 leaves were treated with H2O2 and the stomatal apertures were quantified 

(Figure 8C). WT stomata exhibited a rapid closure response after the application of H2O2: the 

average stomatal aperture reduced about 50% and 86% by 15 and 30 min and remained 

unchanged by 1 h; in contrast, irNaMPK4 stomata did not show a response by 15 min, but 

decreased average aperture 40% and 60%, 30 and 60 min after H2O2 application (Figure 8C). 
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Figure 8. NaMPK4 is required for ABA-, H2O2-, and darkness-induced stomatal closure. 

(A) Photographs of stomata in the epidermal peels from wild-type (WT) and irNaMPK4 (lines 
119 and 163) 15 min after being treated with 2 µM of ABA (the same volume of the solvent of 
ABA were added as control). (B) and (C) Apertures (mean ± SE) of the stomata on 2 µM ABA- 
(B) and 50 µM H2O2 (C)-treated WT and irNaMPK4 epidermal peels. The width of at least 50 
stomatal pores were measured and used to calculate the average stomatal apertures. (D) Stomata 
of irNaMPK4 plants (line 119) have almost no response to darkness-induced changes in 
transpiration rates. Plants were illuminated under white light (300 µmol m-2 s-1) for 4 h to open 
stomatal pores and after lights were switched off, the transpiration rates were recorded. 

 

In the dark, C3 and C4 plants close stomata to conserve water. Stomata of NtMPK4-

silenced tobacco do not close when light is removed, while WT tobacco shows a rapid closure 

phenotype (Marten et al., 2008). Similarly, we found that the transpiration rates of irNaMPK4 

plants showed no responses to light-dark transitions, but stomata of WT quickly closed within 10 

min, indicating that NaMPK4 is required for dark-induced stomatal closure (Figure 8D). 

We concluded that NaMPK4 is located downstream of ABA-induced H2O2 to promote 

stomatal closure in response to drought stress and is also required for the normal closure during 

light-dark transitions. 

3.3.2. NaMPK4 is not involved in salinity stress resistance but negatively controls the ABA- 

induced suppression of seed germination 

Apart from drought tolerance, ABA signaling plays important roles in resistance to 

salinity, inhibition of seed germination and root elongation (Finkelstein et al., 2002; Xiong et al., 

2002; Zhu, 2002; Finch-Savage and Leubner-Metzger, 2006). To examine whether NaMPK4 is 

also involved in salinity tolerance, rosette-staged WT and irNaMPK4 plants were watered daily 

with 80 mL of 200 mM NaCl solution. As early as 4 days after the onset of the salt treatment, 

WT and irNaMPK4 exhibited similar salt stress-induced phenotype (Figure 9A). Similar patterns 

were obtained from plants that were watered with 50 and 100 mM NaCl, although the stress 

symptoms developed somewhat more slowly (data not shown). 

In the natural habitat of N. attenuata, ABA and MeJA exist in leachates from leaf litter of 

juniper, sagebrush, and blackbrush and they function as allelochemical compounds (Krock et al., 

2002). Sensing the existence of ABA and MeJA is important in allowing seeds to germinate into 

open niches free from competitors (Preston and Baldwin, 2000). Examining the inhibitory effects  
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Figure 9. NaMPK4 is not involved in salt resistance in established plants but is required for the 
inhibitory effect of ABA, salt, and MeJA during germination.  

(A) A photograph of plants 4 days after being treated with salt. Rosette-staged wild-type (WT) 
and irNaMPK4 (lines 119 and 163) plants were watered with 80 mL of 200 mM NaCl in addition 
to normal watering; untreated plants served as control. B to D, Silencing NaMPK4 represses the 
ABA- (B), salt- (C), and MeJA (D)-induced germination inhibition. Seeds were sown on media 
containing ABA, NaCl, or MeJA at the indicated concentrations. Note: C and D indicate 
germination rates 11 days after sowing. 

 

of ABA on germination has also been widely used as a tool to identify mutants in ABA signaling. 

Similarly, sensing high salinity during germination is an adaptive response as well. Thus, we 

performed germination assays to determine whether NaMPK4 mediates ABA-, salt-, and MeJA-

inhibited seed germination. Under normal conditions, irNaMPK4 seeds tend to germinate 

marginally earlier than do WT, whereas on germination medium containing 1 µM ABA, 

germination was strongly inhibited in WT seeds (only 5% germination even 20 days after  

sowing), while more than 50% of irNaMPK4 seeds germinated (Fig. 9B). Similar trends were 

seen when seeds were germinated on medium containing 3 µM ABA, although 3 µM ABA had 

much stronger inhibitory effect (Fig. 9B). Eleven days after sowing, irNaMPK4 and WT seeds 

showed 74% and 50% germination rates on 100 mM NaCl medium (Fig. 9C). A greater 

difference was detected between WT and irNaMPK4 seeds when they were sown on medium 

containing MeJA: after 11 days, 5 and 10 µM MeJA augmented media had no effect on 

irNaMPK4 seeds, whereas WT seeds germinated only 63 and 43%, respectively (Fig. 9C). 

Conversely, seedling root elongation assays on medium containing ABA, NaCl, or MeJA did not 

show any differences between WT and irNaMPK4 (data not shown). 

We concluded that NaMPK4 is required for ABA-, salinity-, and MeJA-induced 

germination inhibition, but does not play a role in the responses to these factors in established 

plants. 
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3.3.3. NaMPK4 is likely not involved in the transcriptional regulation of drought stress-

induced genes 

The majority of MAPK targets are transcription factors that regulate the transcript 

abundance of their downstream targets (Chang and Karin, 2001; Rodriguez et al., 2010). We first 

sought to examine whether ABA-induced transcriptional responses are altered in irNaMPK4 

plants by spraying ABA solutions on WT and irNaMPK4 plants. However, both lines showed 

very little response to externally supplied ABA, unless very high and non-physiologically 

relevant concentrations were used, i.e. > 300 µM. This might result from the relatively thick 

cuticle of N. attenuata, which may hinder ABA from entering plant leaves. Thus exogenous 

application of ABA was not used. To further explore the function of NaMPK4 in mediating 

drought-induced responses and to minimize the different degrees of drought stress in WT and  
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Figure 10. Drought-induced transcriptional regulation in wild-type and irNaMPK4 plants. 

Wild type (WT) and irNaMPK4 were grown pairwise in the same 2-liter pots. When plants were 
35 days old, they were exposed to drought stress by stopping watering. (A) ABA contents in the 
+1 leaves of WT and line 119 (mean ± SE; N = 5) over 2 days after being exposed to drought 
stress. (B) The transpiration rates (mean ± SE, N = 5) were measured at indicated times. (C) WT 
and irNaMPK4 (line 119) showed similar symptoms of dehydration 2 days after the initiation of 
drought stress. (D) Transcript levels (mean ± SE; N = 5) of drought-inducible genes, NaNCED1, 
NaOSM1, NaTAS14, and NaHD20 in WT and irNaMPK4 plants after being treated with drought. 
Asterisks indicate significant differences between WT and irNaMPK4 plants (t-test; *, P < 0.05; 
**, P < 0.01; ***, P < 0.001). FM = fresh mass. 
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irNaMPK4 plants grown in single pots, WT and irNaMPK4 (line 119) were grown side by side in 

2-liter pots. After one day of drought treatment, when plants showed no phenotype of drought 

stress, ABA contents were similar between WT and irNaMPK4 (100 ng/g FM; Figure 10A), 

although transpiration of irNaMPK4 was about 1 fold higher than from WT (Figure 10B). Two 

days after drought treatment, as expected, similar levels of wilting were seen in both genotypes 

(Figure 10C) and drought stress elevated ABA contents to 407 and 598 ng/g FM in WT and 

irNaMPK4, respectively (Figure 10A). Consistent with the impaired stomatal closure response in 

irNaMPK4 plants, even when dehydrated, irNaMPK4 still transpired twice the amount of water 

per leaf area than did WT (Figure 10B). 

In N. attenuata, drought stress elevates the levels of transcript of NaNCED1, NaOSM1, 

NaTAS14, and NaHD20 (Parra et al., 1996; Re et al., 2011). One day after drought treatment, all 

these genes did not show augmented levels (Figure 10D). Consistent with the greater ABA 

contents of irNaMPK4 plants, 2 days after being deprived of water, all these genes’ transcript 

abundance was elevated in WT, while irNaMPK4 plants exhibited even greater levels of these 

transcripts (Figure 10D).Therefore, NaMPK4 seems not to be required for the transcript 

regulation of these genes induced by drought stress. Large scale transcriptional analyses are 

needed to further examine its role in drought stress-induced transcriptome reconfiguration. 
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3.4. The role of NaMPK4 in plant-pathogen responses 

3.4.1. NaMPK4 confers resistance to Pst DC3000 in intercellular spaces and likely in 

stomata 

 As a part of the plant’s innate immune system, stomata play an important role in limiting 

bacteria’s entry into plant tissues, since guard cells close stomata after perceiving bacterium-

derived elicitors; furthermore, ABA signaling is required for this defense response (Meloto et al. 

2006). We hypothesized that the reduced guard cell sensitivity to ABA in the NaMPK4-silenced 

plants may impair stomatal responses to Pst DC3000 and eventually result in higher infection 

rates.  

In Arabidopsis incubating leaves or epidermal peels with Pst DC3000 leads to stomatal closure 

within the first 1 to 2 h (Meloto et al. 2006). However, guard cells on N. attenuata epidermal 

peels did not respond to Pst DC3000 in various densities (data not shown). Therefore, to monitor 

the closure response of stomata, we measured the transpiration rates at different times after 

dipping leaves in a Pst DC3000 suspension. WT decreased their transpiration rates about 42% 2.5 

h after applying pathogens to the leaf surfaces (Figure 11A). irNaMPK4 showed an even stronger 

reduction in transpiration rates and by 2.5 h transpiration rates decreased to WT levels (57% 

reduced), although by 1 h the transpiration rates of irNaMPK4 plants remained 30% higher than 

those of WT (Figure 11A). After one day, WT transpiration rates almost completely recovered to 

levels of non-treated plants and those irNaMPK4 remained very low, which might be due to the 

large populations of bacteria that had propagated in the plants: no bacteria were detected in WT 

and strikingly Pst DC3000 amplified to 106 and 107 cfu/cm2 by day 1 and 2, respectively (Figure 

11B). Consistently, 3 days after application of Pst DC3000, chlorosis was observed in infected 

leaves of irNaMPK4, but not in WT; by day 10, irNaMPK4 exhibited necrotic lesions, while only 

some of the bacterium-applied WT leaves (about 30%) showed slight chlorosis (Figure 11C). 

At least two steps account for the successful colonization of bacteria in plants: entry from 

stomata or wounds and amplification in the intercellular spaces of plant tissues. To further dissect 

the function of NaMPK4 in regulating stoma-mediated resistance to bacterial pathogens, Pst 

DC3000 was pressure infiltrated into WT and irNaMPK4 leaves to circumvent the requirement of 

entry through stomata. One day after inoculation, the bacterial population in WT was 

approximately 8 times smaller than that in irNaMPK4; 2 days after infiltration, bacteria density in  
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Figure 11. Silencing NaMPK4 compromises resistance to the bacterial pathogen, Pst DC3000. 

(A) and (B) Transpiration rates and bacterial populations in wild-type (WT) and irNaMPK4 (lines 
119 and 163) leaves after applying Pst DC3000 to leaf surfaces. Leaves of WT and irNaMPK4 
were dipped in a Pst suspension (O.D.600 = 0.8) and the transpiration rates (mean ± SE, N = 8) 
(A) and bacterial populations (mean ± SE, N = 10) were measured at indicated time (B). (C) 
Photographs taken from leaves 3 and 10 days after dipping in pathogen suspension (two 
replicated leaves from each line are shown). Note that the second WT leaf shows slight chlorosis 
after 10 days. (D) Pst DC3000 (O.D.600 = 0.001) was pressure infiltrated to abaxial sides of 
leaves and the bacterial population (mean ± SE, N = 10) were examined in samples collected at 
indicated times. Asterisks indicate significant differences between WT and irNaMPK4 plants (t-
test; *, P < 0.05; **, P < 0.01). 
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WT was around 25 times less (Figure 11D), indicating that silencing NaMPK4 compromises the 

innate immunity of N. attenuata against Pst DC3000 bacteria that are located in plant 

intercellular spaces. Notably, compared with the bacterial populations in plants whose leaf 

surfaces were applied with bacteria, much smaller differences were found in plants in which 

bacteria were infiltrated, especially one day after bacterial dipping and after infiltration. These 

data strongly suggest that NaMPK4 functions in N. attenuata’s innate immunity against bacterial 

pathogen Pst DC3000 by probably limiting bacterial entry from stomata and suppressing 

bacterial amplification after they invade into the intercellular spaces. 

Notably, the positive role of NaMPK4 in defense against Pst DC3000 in N. attenuata is 

not consistent with that of AtMPK4 in Arabidopsis, since mpk4 mutant plants have highly 

elevated SA levels and exhibit augmented resistance to Pst DC3000 (Petersen et al., 2000). We 

next examined whether the decreased resistance to Pst DC3000 resulted from impaired SA 

defense in irNaMPK4 plants. Under normal conditions, WT and irNaMPK4 plants had the same 

levels of SA (145 ng/g FM); after bacterial infiltration irNaMPK4 showed much higher levels of 

SA than did WT: by 12 h, ~ 2300 and ~ 6000 ng/g FM SA were found in WT and irNaMPK4, 

respectively, and greater amounts of SA were also found in irNaMPK4 plants 1 and 2 days after 

infiltration (Figure 12A). Inoculation of the pathogen solvent (Mock) did not induce SA 

accumulation after 12 h (data not shown). Most likely, increased SA levels in irNaMPK4 plants 

after Pst DC3000 infection resulted from the rapid growth of pathogen populations in these 

plants. In certain plant-pathogen interactions, JA and ABA also regulate plant resistant levels 

(Adie et al., 2007; de Torres-Zabala et al., 2007; Robert-Seilaniantz et al., 2007; Flors et al., 

2008; Zabala et al., 2009). We also determined the levels of this phytohormones after Pst 

DC3000 infection; however, no differences of JA or ABA contents were found between WT and 

irNaMPK4 plants (data not shown). 

3.4.2. NaMPK4 regulates plant resistance to Pst DC3000 independent of SA and NPR1 

Despite having high SA levels, Pst DC3000 amplified more in irNaMPK4; hence, SA 

might be dispensable in N. attenuata’s resistance to Pst DC3000. To examine this possibility, we 

sprayed 1 mM SA on WT and irNaMPK4 plants, and after 1 day we infiltrated these leaves with 

Pst DC3000. SA application was repeated once each day. Plants sprayed with water containing 

0.1% ethanol (the solvent of 1mM SA solution) served as controls. The growth of Pst DC3000 

was examined up to 3 days after pathogen infiltration. Neither WT nor irNaMPK4 plants showed  
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Figure 12. NaMPK4 mediates the resistance of N. attenuata to Pseudomonas syringae pv. 
tomato DC3000 in an SA- and NPR1-independent manner. 

(A) SA contents in leaves of WT and irNaMPK4 after being infiltrated with Pst DC3000. Pst 
DC3000 (O.D.600 = 0.001) was infiltrated to abaxial sides of leaves and SA contents (mean ± SE, 
N = 5) were examined in samples collected at indicated times. (B) Exogenously applying SA 
does not alter the resistant levels of wild-type or irNaMPK4 plants. Leaves of wild-type (WT) 
and irNaMPK4 (lines 119) plants were sprayed with 1 mM SA and after one day, Pst DC3000 
(O.D.600 = 0.001) was infiltrated into WT and line 119. Pathogen populations were determined 
after indicated times. SA was applied once a day until experiments finished. (C) NahG 
effectively minimizes SA accumulation in Pst DC3000-infected plants. Wild-type (WT), 
irNaMPK4 (line 119), NahG, and 119×NahG were infiltrated with Pst DC3000 (O.D.600 = 0.001) 
SA contents were measured in the infected areas 2 days after pathogen treatment. (D) NaMPK4 
confers resistance to intercellular located Pst DC3000 in a SA- and NPR1-independent manner. 
irNaMPK4 (line 119) was crossed with NahG and irNPR1 plants to create 119×NahG and 
119×irNPR1 plants and the growth of bacteria was examined in WT, line 119, NahG, irNPR1, 
119×NahG, and 119×irNPR1 plants. All values are mean ± SE. Asterisks indicate significant 
differences between WT and irNaMPK4 (t-test; *, P < 0.05; **, P < 0.01; ***, P < 0.001). FM, 
Fresh mass.  

 

higher resistance to Pst DC3000 despite the exogenously applied SA, suggesting that SA is not 

required in N. attenuata’s resistance to Pst DC3000 (Figure 12B). Furthermore, we generated 

plants transformed with a bacterial salicylic acid hydroxylase gene (NahG) downstream of a 35S 

promoter (NahG plants). NahG and irNaMPK4 (line 119) were crossed to obtain plants with 

minimal SA accumulation after pathogen infection. We noticed that 119×NahG plants were 

morphologically identical to irNaMPK4 plants, confirming that the decreased rosette size and 

stalk length of irNaMPK4 plants were not dependent on SA. NPR1 protein plays an essential role 

in SA-mediated gene expression and disease resistance (Shah, 2003; Dong, 2004; Loake and 

Grant, 2007). An irNPR1 line (Rayapuram and Baldwin, 2007), which was silenced in NPR1 

transcript levels, was also crossed with irNaMPK4 plants (119×irNPR1) to generate plants 

silenced in both NPR1 and NaMPK4. In line with the pathogen growth data obtained after SA 

application, removing SA by NahG overexpression (Figure 12C) did not alter pathogen growth in 

WT and irNaMPK4 plants (Figure 12D). Similarly, Pst DC3000 populations increased to the 

same levels in irNPR1 and 119×irNPR1 plants compared with WT and irNaMPK4 plants, 

respectively (Figure 12D). Thus, we concluded that NaMPK4 mediates the resistance of N. 

attenuata to Pst DC3000 located in the intercellular spaces in a pathway that is independent of 

SA and NPR1.  
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3.4.3. AtMPK11 is not involved in drought or pathogen resistance in Arabidopsis 

In addition to AtMPK4, NaMPK4 also has a short sequence distance to AtMPK11 (Figure 

3A). It is possible that in Arabidopsis AtMPK11, but not AtMPK4, is functionally similar to 

NaMPK4 in drought resistance and pathogen defense. 

As reported by Kosetsu et al. (2010), we found that mpk11 mutant (SALK_049352C) is 

morphologically identical to WT (Col-0). Measurement of transpiration rates indicated that WT 

and mpk11 mutant had similar values (Figure 13A). Furthermore, WT and mpk11 had the same 

water loss rates in detached leaves and accumulated similar amount of ABA (Figure 13B and 

13C). When plants were subjected to a drought treatment, no differences in either the speed of 

wilting or the ABA levels were found between WT and mpk11 (data not shown). We infer that 

AtMPK11 is not involved in drought stress resistance.  

To determine the role of AtMPK11 in defense against Pst DC3000, bacterial suspension 

was infiltrated into WT and mpk11 leaves and Pst DC3000 amplification was quantified. 

Compared with Col-0 WT, mpk11 was slightly more resistant to the pathogen (Figure 13D). After 

dipping leaves of WT and mpk11 in a Pst DC3000 suspension, similar cell death phenotype was 

found in all plants (data not shown). Thus, AtMPK11 does not have similar function as NaMPK4 

in pathogen defense. 
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Figure 13. Arabidopsis AtMPK11 is not involved in the resistance to drought or pathogen Pst 
DC3000. 

(A) Col-0 and mpk11 were grown under the long-day conditions and transpiration rates (mean ± 
SE; N = 7) were measured. (B) Leaves of Col-0 and mpk11 were excised and kept abaxial sides 
up on a bench under the long-day conditions. The masses of leaves were recorded at indicated 
times to calculate the percentage of transpirational water loss (mean ± SE, N = 7). (C) The 
contents of ABA (mean ± SE, N = 10) were determined by HPLC-MS/MS. (D) mpk11 mutant is 
slightly more resistant to Pst DC3000. Col-0 and mpk11 were infiltrated with Pst DC3000 
(O.D.600 = 0.001) and the bacterial populations were determined after indicated times (N = 8). 
Asterisks indicate significant differences between Col-0 and mpk11 (t-test; **, P < 0.01). 
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Figure 14. NaMPK4 negatively 
regulates N. attenuata’s resistance to the 
specialist insect herbivore M. sexta. 

Wild-type (WT) and irNaMPK4 plants 
were infested with 30 neonate M. sexta 
larvae (1 larva/plant). Mass of these 
larvae (mean ± SE) on WT and 
irNaMPK4 plants was determined on 
day 4, 7, 9, and 11. Asterisks indicate 
significant differences between the mass 
of larvae reared on WT and irNaMPK4 
plants (t-test; ***, P < 0.001; N = 30). 

3.5. NaMPK4 and plant defense against herbivores 

3.5.1. NaMPK4 is activated by simulated M. sexta herbivory, but not by mechanical 

wounding 

To study the function of NaMPK4 in N. attenuata’s defense against herbivores, we 

performed bioassays on WT and irNaMPK4 plants to examine whether silencing NaMPK4 

influences the growth of M. sexta. Freshly hatched M. sexta larvae were placed on WT and 

irNaMPK4 plants and larval mass over time was recorded. From as early as day 4, compared with 

those on WT plants, larvae on irNaMPK4 plants exhibited decreased growth rates; by day 11, 

larvae on irNaMPK4 plants had only 1/3 of the mass of the larvae fed on WT plants (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

Wounding is known to elevate WIPK transcript levels in cultivated tobacco (Seo et al., 

1995; Zhang and Klessig, 1998). Similarly, in N. attenuata wounding or simulated herbivore 

treatment increased WIPK and SIPK transcript levels (Wu et al. 2007). To determine if 

NaMAPK4 is involved in activating defense responses to herbivore attack, leaves of rosette-

staged WT and irNaMPK4 plants were wounded with a pattern wheel and 20 µL of 1/5 diluted 

M. sexta oral secretions (OS) were applied immediately to wounds (W+OS) to mimic herbivory 

(Halitschke et al., 2001; Halitschke et al., 2003); for comparison with mechanical wounding, 20 

µL of water were applied to wounds (W+W). Quantitative RT-PCR (q-PCR) measurement 
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showed that after W+W treatment, NaMPK4 transcript levels were only slightly and not 

significantly elevated compared with those in untreated plants. W+OS increased NaMPK4 

transcript levels one fold after 1.5 h (P = 0.0025, unpaired t test) (Figure 15A). 

Using an antibody raised against the N-terminus of NtMPK4 (Gomi et al., 2005), where 

NaMPK4 shares identical sequence with NtMPK4, we examined whether NaMPK4 is activated 

by wounding and herbivory. Immunoblotting analysis indicated that neither W+W nor W+OS 

noticeably changed the abundance of NaMPK4 protein by 1 h (Figure 15B). Moreover, NaMPK4 

protein levels were about 80% decreased in irNaMPK4 plants, confirming the effectiveness of 

gene silencing and the specificity of the antibody. Thereafter, we measured the activity of 

NaMPK4 before and after W+W and W+OS treatment with an immune-complex kinase assay: 

NaMPK4 protein was immuno-pulled down from W+W- and W+OS-treated WT and irNaMPK4 

tissue extracts using the NtMPK4/NaMPK4-specific antibody and the kinase activity was 

measured subsequently using myelin basic protein as a substrate. In contrast to NtMPK4 in N. 

tabacum, which is rapidly (10 min) activated by wounding (Gomi et al., 2005), the activity of 

NaMPK4 was not noticeably elevated after wounding. However, three independent experiments 

revealed that 10 min after W+OS treatment, the activity of NaMPK4 increased 1 fold, and this 

W+OS-induced activity rapidly vanished by 30 min (Figure 15C). These findings suggest that M. 

sexta herbivory specifically and transiently activates NaMPK4 in N. attenuata. 

 Fatty acid-amino acid conjugates (FACs) in M. sexta OS are necessary and sufficient to 

trigger M. sexta herbivory-specific responses in N. attenuata, including rapid activation of SIPK 

and WIPK and initiation of JA and JA-Ile biosynthesis (Halitschke et al., 2001; Halitschke et al., 

2003; Wu et al., 2007). We next explored whether FACs are also elicitors that activate NaMPK4. 

Twenty µL of FAC A (N-linolenoyl-L-Gln, 27.6 ng/µL), one of the most abundant FACs in M. 

sexta OS (Halitschke et al., 2001), were applied to freshly wounded N. attenuata leaves 

(W+FAC); for comparison, W+W and W+OS treatments were performed in parallel. Samples 

were harvested 10 min after each treatment, when the kinase activity attained the highest values 

(Figure 15C). Immune-complex kinase assays were done to determine NaMPK4 activity in these 

plants (Figure 15D). Again, W+W treatment didn’t noticeably elevate the levels of NaMPK4 

activity; as expected, W+FAC and W+OS treatment enhanced NaMPK4 activity levels. 

Furthermore, W+OS-induced NaMPK4 activity was totally abolished when FACs were removed 

from M. sexta OS by ion exchange chromatography (FAC free OS; Figure 15D). All these data  
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Figure 15. NaMPK4 is specifically activated by OS elicitation. 

(A) Mean transcript levels (±SE) of NaMPK4 in WT plants after W+W and W+OS treatments as 
measured with q-PCR. Asterisks represent significantly different transcript levels between 
untreated control plants and W+OS treated plants at the indicated times (*, P < 0.05; **, P < 0.01; 
***, P < 0.001). (B) Immunoblotting analysis of NaMPK4. Wild-type (WT) and irNaMPK4 (line 
119) were wounded with a pattern wheel and 20 µL of water (W+W) or M. sexta OS (W+OS) 
were immediately applied to puncture wounds. Samples were collected after 1 h; non-treated 
plants served as controls. Tissue from 3 replicate treatments was pooled and total soluble protein 
extracts were separated with SDS-PAGE and further blotted onto a PVDF membrane. An anti-
NtMPK4 antibody was used for NaMPK4 detection. Top: image of immunoblotting analysis; 
bottom: image of a duplicated gel, which was loaded with same samples, and stained with 
Coomassie Brilliant Blue (CBB). (C) Immune-complex kinase assay of NaMPK4 activity after 
W+W and W+OS treatment. WT plants were treated with W+W and W+OS, and samples were 
collected after indicated times. NaMPK4 were immunoprecipitated with the anti-NtMPK4 
antibody, and its activity levels were assayed with myelin basic protein as a substrate. (D) 
Immune-complex kinase assay of NaMPK4 activity in FAC-treated plants. N. attenuata WT 
plants were wounded with a pattern wheel, and 20 µL of 0.005% Tween 20 (solvent of FAC A), 
FAC A solution (27.6 ng/µL), FAC-free M. sexta OS, or M. sexta OS were immediately applied 
to wounds. NaMPK4 were immunoprecipitated with the anti-NtMPK4 antibody, and its activity 
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levels were assayed with myelin basic protein as a substrate. (E) irNaMPK4 plants have normal 
levels of SIPK and WIPK activity after herbivory. Wild-type and irNaMPK4 (line 119 and 163) 
were treated with W+OS, and samples were harvested at indicated times. SIPK and WIPK kinase 
activity levels were determined in these samples (each sample were pooled from 4 biological 
replicates) using an in-gel kinase assay. 

 

indicate that during herbivory, FACs in M. sexta OS are necessary and sufficient to activate three 

MAPKs: SIPK, WIPK (Wu et al., 2007), and NaMPK4.To examine whether silencing NaMPK4 

altered the activity of SIPK and WIPK, an in-gel kinase assay was performed to measure the 

levels of SIPK and WIPK activity after W+OS treatment in WT and irNaMPK4 plants (Figure 

15E). No differences of SIPK and WIPK activity between WT and irNaMPK4 plants were found. 

3.5.2. Silencing NaMPK4 alters phytohormone levels after simulated M. sexta herbivory 

To investigate whether NaMPK4 modulates wounding- and herbivory-elicited JA levels 

and thus alters N. attenuata’s defense against M. sexta, we treated plants with W+W and W+OS, 

and the JA contents in WT and irNaMPK4 plants after these treatments were determined by LC-

MS/MS. No differences in JA levels were detected between WT and irNaMPK4 plants before 

and after W+W treatment (Figure 16A). However, irNaMPK4 plants showed 65% increased 

levels of JA 1 h after W+OS treatment compared to those in W+OS-treated WT plants (Figure 

16B). Consistently, JA-Ile, the conjugate of JA and isoleucine, which binds to the F-box protein 

COI1 and executes most functions of JA (Staswick and Tiryaki, 2004; Chini et al., 2007; Thines 

et al., 2007), was similarly increased: 1 h after W+OS treatment, JA-Ile contents were 60% 

higher in irNaMPK4 plants, while JA-Ile contents in W+W-induced WT and irNaMPK4 plants 

were similar (Figure 16C, D). 

The antagonistic effect of SA on JA accumulation and signaling has been well 

documented (Doares et al., 1995; Niki et al., 1998; Kunkel and Brooks, 2002; Spoel et al., 2003). 

We quantified SA concentrations in order to determine if the elevated JA levels in W+OS-treated 

irNaMPK4 plants resulted from attenuated SA levels. WT and irNaMPK4 plants showed no 

difference in SA levels before and after either treatment (Figure 16E, F). M. sexta herbivory and 

OS elicitation, but not wounding, increase ethylene biosynthesis and emission in N. attenuata, 

which in turn, regulate herbivore-elicited nicotine accumulation (Steppuhn et al., 2004; von Dahl 

et al., 2007). After W+OS–elicitation, very similar levels of ethylene were emitted from WT and 

irNaMPK4 plants (Figure 16G). 
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Figure 16. Silencing NaMPK4 specifically elevates herbivory-induced JA and JA-Ile levels. 

Wild-type (WT) and irNaMPK4 plants (line 119 and 163) were wounded with a pattern wheel 
and 20 µL of water (W+W) or M. sexta OS (W+OS) were immediately applied to wounds. 
Samples were harvested at indicated times, and their JA (A and B), JA-Ile (C and D) and SA (E 
and F) contents (mean ± SE; N = 5) were analyzed with HPLC-MS/MS. (G) Ethylene production 
as quantified using a photoacoustic laser spectrometer. In 6 replicates were used for each 
genotype. Three leaves were treated with W+OS, immediately afterward sealed in a three-neck 
250-mL flask and kept in the greenhouse for 5 h. Asterisks indicate significant differences 
between WT and irNaMPK4 plants (t-test; *, P < 0.05; **, P < 0.01). 

 

We conclude that NaMPK4 specifically and negatively modulates M. sexta herbivory-

induced JA accumulation and thus comprises a part of the regulatory network that is required for 

normal regulation of JA levels in N. attenuata in response to M. sexta attack.  

G 
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3.5.3. Silencing NaMPK4 increases herbivory-induced levels of TPIs and trans-α-

bergamotene, but not of other defense metabolites 

Many plant secondary metabolites function as defenses against herbivores (Hadacek, 

2002). In N. attenuata, trypsin proteinase inhibitors (TPIs) (Van Dam et al., 2001), nicotine 

(Steppuhn et al., 2004), caffeoylputrescine (Kaur et al., 2010), and diterpene glucosides (DTGs) 

(Jassbi et al., 2008; Heiling et al., 2010) are all important direct defenses against herbivores, and 

the accumulations of these compounds are regulated by JA signaling (Paschold et al., 2007). We 

sought to determine whether these metabolites were responsible for the increased resistance of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control W+W W+OS

T
P

I a
c

ti
v

it
y

 (
n

m
o

l 
m

g
-1

p
ro

te
in

) WT

119

163

*
*

A B

0

100

200

300

400

500

600

700

Control W+W W+OS

N
ic

o
ti

n
e

 (
µ

g
 g

-1
F

M
)

WT

119

163

0

50

100

150

200

250

Control W+W W+OS

C
a

ff
e

o
y

lp
u

tr
e

s
c

in
e

 (µ
g

 g
-1

F
M

) WT

119

163

0

5

10

15

20

25

30

35

Control W+W W+OS

D
it

e
rp

e
n

e
 g

ly
c

o
s

id
e

s
 (

p
e

a
k

 a
re

a
 g

-1
F

M
)

WT

119

163

C D



RESULTS 
 

47 
 

Figure 17. Wounding- and herbivory-induced direct defense metabolites in wild-type and 
irNaMPK4 plants.  

Wild-type (WT) and irNaMPK4 plants (line 119 and 163) were wounded with a pattern wheel 
and 20 µL of water (W+W) or M. sexta OS (W+OS) were immediately applied to the puncture 
wounds. (A) The levels of trypsin proteinase inhibitor activity (TPI) were analyzed by radial 
diffusion assay; nicotine (B), caffeoylputrescine (C), and diterpene glucosides (D) (mean ± SE; 
N=5) were analyzed with a HPLC in samples harvested 3 days after treatment. 

 

irNaMPK4 plants. Consistent with the increased levels of W+OS-induced JA in irNaMPK4 

plants, these plants had 25% higher TPI activity than did WT plants after W+OS elicitation but 

not after W+W treatment (Figure 17A). In contrast, nicotine, caffeoylputrescine, and DTG 

contents were the same in WT and irNaMPK4 plants (Figure 17B, C, D). 

Apart from these direct defenses, M. sexta herbivory elicits the release of volatile organic 

compounds (VOCs), such as trans-α-bergamotene (TAB), from N. attenuata, which attracts 

predators of M. sexta larvae and eggs and thereby functions as an indirect defense (Kessler and 

Baldwin, 2001). Furthermore, wounding and herbivory result in the release of green leaf volatiles 

(GLVs), which can attract predators of herbivores or increase herbivore loads (Halitschke et al., 

2008; Meldau et al., 2009; Dicke and Baldwin, 2010). Compared with those in WT plants, TAB 

emissions in irNaMPK4 plants increased by about 85% in response to W+W treatment and more 

than 5 fold in response to W+OS treatment (Figure 18A). The quantities of GLVs released from 

WT and irNaMPK4 plants after W+W and W+OS treatments were similar (Figure 18B). Since 

GLVs also function as feeding stimulants in N. attenuata (Halitschke et al., 2004; Meldau et al., 

2009), these GLV data excluded the possibility that the reduced M. sexta larval mass gain 

resulted from impaired GLV emission. 

Herbivore growth is not only determined by the concentration of plants defense 

metabolites but also by the nutritional value of the diet. We measured protein concentrations and 

starch contents in WT and irNaMPK4 plants. WT and irNaMPK4 plants did not differ in their 

protein content (data not shown), however irNaMPK4 plants accumulated 57% -93% more starch 

than WT plants (Figure 19). These results ruled out the possibility that the highly enhanced 

defense against M. sexta resulted from decreased nutrient contents of irNaMPK4 plants. 

Thus, NaMPK4 highly suppresses OS-elicited JA accumulation, TPI activity, and release 

of TAB, but not other known anti-herbivore secondary metabolites, and suppresses resistance of 

N. attenuata to its natural herbivore, M. sexta. 
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Figure 18. Volatile emissions in WT and MPK4-silenced plants. 

(A) trans-α-bergamotene emission was determined in WT and irNaMPK4 (line 119) plants 24 h 
after W+W and W+OS treatment. (B) Immediately after W+W and W+OS treatment, green leaf 
volatiles (GLVs) were trapped for 3 h from treated leaves. Volatiles of 8 replicate samples per 
genotype and treatment were quantified with a GC-MS (mean ± SE). Asterisks indicate 
significant differences between WT and irNaMPK4 plants (t-test; *, P < 0.05; **, P < 0.01; ***, 
P < 0.001). 

 

 

 

 

 

 

 

 

Figure 19. Starch accumulation in WT and MPK4-silenced plants. 
Starch levels were estimated in 10 replicate fully expanded rosette leaves from WT and both 
irNaMPK4 lines using the Anthrone method. Asterisks indicate significant differences between 
WT and irNaMPK4 plants (t-test; *, P < 0.05; **, P < 0.01). 
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3.5.4. Silencing NaMPK4 augments transcript levels of WRKY transcription factors 

WRKY transcription factors are known to regulate plant defense responses and are 

potential targets of MAPKs (Eulgem et al., 2000; Kim and Zhang, 2004; Ulker and Somssich, 

2004; Qiu et al., 2008). In N. attenuata, WRKY3 and WRKY6 have been identified as playing a 

role regulating JA elicitation, the accumulation of TPI, and trans-α-bergamotene emissions, as 

silenced lines failed to induce these defenses after herbivory and, consequently, were highly 

vulnerable to herbivores (Skibbe et al., 2008). To determine if NaMPK4 regulates WRKY3 and 

WRKY6 transcript levels, we measured their transcript accumulation after W+W and W+OS 

treatments in WT and irNaMPK4 plants. Wounding alone increased the levels of WRKY3 in both 

lines transiently 30 fold after 0.5 h. Thirty min after W+OS treatment, in WT plants WRKY3 

transcript levels were about 1 fold higher than those induced by W+W and even higher levels of 

WRKY3 transcript were detected in irNaMPK4 plants after 1 h (Figure 20A). Furthermore, 

compared with WT, irNaMPK4 plants showed higher transcript levels of WRKY6 after both 

W+W and W+OS treatments (Figure 20B). It is likely that NaMPK4 modulate many more 

transcription factors.  

 

 

 

 

 

 

 

 

 

 

Figure 20. NaMPK4 mediates transcript levels of two transcription factors, WRKY3 and WRKY6. 

Leaves were wounded with a pattern wheel; 20 µL of water (W+W) or M. sexta OS (1/5-diluted) 
(W+OS) was applied to the wounds, and leaves from five replicate plants were harvested at the 
indicated times. Mean transcript levels (±SE, N = 5) of WRKY3 (A) and WRKY6 (B) were 
analyzed with q-PCR. Asterisks indicate significant differences (t-test; *, P < 0.05; **, P < 0.01). 
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3.5.5. NaMPK4 regulates specific JA-induced responses  

JA-induced responses play a major role in development and interactions with herbivores 

and pathogens (Shah, 2005; Wasternack, 2007; Howe and Jander, 2008; Wu and Baldwin, 2010). 

In Arabidopsis, AtMPK4 is required for the transcript accumulation of JA-responsive genes 

(Petersen et al., 2000; Brodersen et al., 2006), and in tobacco plants NtMPK4 regulates methyl 

jasmonate (MeJA)-induced TPI levels (Gomi et al., 2005). 

To examine the function of NaMPK4 in mediating the accumulation of JA-inducible 

transcripts and defense-related secondary metabolites, WT and irNaMPK4 plants were treated 

with 20 µL of lanolin that contained methyl jasmonate (MeJA) at a concentration of 5 mg mL-1, 

and plants treated with pure lanolin served as controls. qPCR was used to examine the transcript 

levels of several JA-inducible genes. Lanolin application did not alter the levels of any genes or 

secondary metabolites we investigated (data not show). Compared with those in WT plants, 2.4- 

and 5.4-fold higher levels of LOX3 (lipoxygenase 3), a gene involved in JA biosynthesis, were 

seen in irNaMPK4 plants 6 h and 10 h after MeJA treatment (Figure 21A). Similarly, AOC 

(allene oxide cyclase) and OPR3 (OPDA reductase 3), two other JA biosynthesis genes, also 

showed about doubled mRNA levels in irNaMPK4 plants (Figure 21B, C). However, TD 

(threonine deaminase), a key enzyme involved in the formation of isoleucine, showed similar 

levels of transcript accumulation (Figure 21D). Ten hours after MeJA treatment, 75% higher 

levels of TPI transcript were detected in irNaMPK4 plants (Figure 21E). 

Moreover, important secondary metabolites were quantified 3 days after MeJA treatment. 

Consistent with transcript data, after MeJA treatment irNaMPK4 plants showed about 30% 

higher levels of TPI activity than did WT plants (Figure 22A). However, TAB emission and 

contents of nicotine, caffeoylputrescine, and DTGs increased to the same levels in both WT and 

irNaMPK4 plants (Figure 22B, C, D, and E). 

From these results we conclude that NaMPK4 is specifically involved in regulating some 

but not all of the MeJA-induced responses in N. attenuata. 
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Figure 21. NaMPK4 modulates MeJA-induced transcript accumulation of specific genes in N. 
attenuata. 

Wild-type (WT) and irNaMPK4 plants (line 119) were treated with 20 µL of lanolin containing 
100 µg of MeJA. Samples were harvested at indicated times and the transcript levels of 
lipoxygenase 3 (LOX3) (A), allene oxide cyclase (AOC) (B), OPDA reductase 3 (OPR3) (C), and 
threonine deaminase (TD) (D), and trypsin proteinase inhibitor (TPI) (E) were analyzed with 
qPCR. Asterisks indicate significant differences between WT and irNaMPK4 plants (t-test; *, P < 
0.05; **, P < 0.01; ***, P < 0.001; N = 5). 
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Figure 22. Levels of defense-related plant secondary metabolites in wild-type and irNaMPK4 
plants after MeJA treatment. 

Wild-type (WT) and irNaMPK4 plants (line 119 and 163) were treated with 20 µL of lanolin 
containing 100 µg of MeJA. Plants treated with lanolin were used for comparisons. (A) Trypsin 
proteinase inhibitor (TPI) activity 3 days after treatments. (B) trans-α-bergamotene emission 1 
day after treatments. Contents of nicotine (C), caffeoylputrescine (D), and diterpene glycosides 
(DTGs) (E) (mean ± SE) in WT and irNaMPK4 plants 3 days after treatments. Asterisks indicate 
significant differences between WT and irNaMPK4 plants (t-test; *, P < 0.05; N = 5). 
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3.5.6. NaMPK4’s effects on M. sexta resistance are largely independent of JA signaling 

 In N. attenuata, the deployment of all known inducible direct and indirect defenses is 

dependent on JA signaling (Paschold et al., 2007). Although irNaMPK4 plants have increased JA 

levels after OS elicitation, only one of the known direct defensive compounds, TPI, showed 

moderately elevated levels (Figure 17A). Given the dramatically enhanced resistance levels of 

irNaMPK4 plants against M. sexta attack, we speculated that NaMPK4 may also regulate a 

defense pathway that is independent of JA signaling. To test this hypothesis, a N. attenuata line 

silenced in COI1 (irCOI1 plants) (Paschold et al., 2007) was crossed with irNaMPK4 (line 119) 

to obtain 119×irCOI1 plants, which were silenced in both NaMPK4 and COI1 (Figure 23A). M. 

sexta neonates were placed on WT, irCOI1, irNaMPK4 (line 119), and 119×irCOI1 plants and 

herbivore growth was recorded over 8 days (Figure 23B). After 8 days, compared with larvae fed 

on WT plants, M. sexta larvae on irNaCOI1 plants gained around 2 times more mass, whereas the 

mass of larvae fed on irNaMPK4 plants were 50% less than on WT plants. Importantly, although 

silencing COI1 in irNaMPK4 plants clearly increased the mass of M. sexta allowing them to 

attain the mass of those on WT plants, these larvae still only weighed 1/3 of the mass of the 

larvae reared on irCOI1 plants (Figure 23B). We further analyzed the secondary metabolites 

involved in direct and indirect defenses against M. sexta, and confirmed that 119×irCOI1 plants 

had substantially diminished levels of TPI, nicotine, caffeoylputrescine, DTGs, α-duprezianene 

and TAB owing to silencing of COI1 (Figure 23C). 
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Figure 23. Silencing NaMPK4 enhances N. attenuata’s resistance to the specialist herbivore M. 
sexta in a JA signaling-independent manner. 

(A) Transcript levels (mean ± SE) of COI1 and NaMPK4 in wild-type (WT), irCOI1, irNaMPK4 
(line 119), and 119×irCOI1 plants. Samples were collected from 5 replicate rosette-stage plants, 
and the transcript levels were measured with qPCR. Transcript levels of COI1 and NaMPK4 were 
normalized with the levels of these genes in WT plants, which were designated as 10. (B) Wild-
type (WT), irNaMPK4 (line 119), irCOI1, and 119×irCOI1 plants were infested with 30 neonate 
M. sexta larvae (1 larva/plant). Mass of these larvae (mean ± SE) was recorded on day 4, 6, and 
8. Asterisks indicate significant differences between the mass of larvae reared on WT and 
irNaMPK4, irCOI1, or 119×irCOI1 plants (t-test; ***, P < 0.001, N = 30). (C) Levels (mean ± 
SE) of nicotine, caffeoyl-putrescine, diterpene glucosides (DTGs), trypsin proteinase inhibitor 
(TPI), α-duprezianene and tans-α-bergamotene in 5 replicated WT, irCOI1, irNaMPK4 (line 
119), and 119×irCOI1 plants. Plants were treated with W+OS, and the levels of these compounds 
were quantified. Their levels in WT plants were designated as 1, and their levels in other types of 
plants were normalized those in WT plants.  
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To examine whether the resistance of irNaMPK4 plants to M. sexta is largely JA 

signaling-independent, WT and irNaMPK4 plants were infested with 18 M. sexta neonates (2 

larvae/plant), and after each 24 h all the larvae were moved to new uninduced plants. Since all 

JA-induced direct defenses require more than 24 h for their biosynthesis and accumulation to 

attain effective levels (Baldwin et al., 1998; Wu et al., 2006; Heiling et al., 2010; Kaur et al., 

2010), relocating larvae to new uninduced plants reduces the intake of defensive compounds and 

results in elevated larval mass (Paschold et al., 2007). Consistent with the observation that 

silencing NaMPK4 enhances defense in N. attenuata plants in a JA-independent fashion, larvae 

on irNaMPK4 plants still consumed less leaf tissue and grew slower than those reared on WT 

plants (Figure 24A, B).  

 

 

 

 

 

 

 

 

 

 
Figure 24. irNaMPK4 plants exhibit higher resistance to M. sexta than do wild-type plants even 
when larvae are relocated to unelicited plants every 24 h. 

N. attenuata wild-type (WT) and irNaMPK4 plants (line 119 and 163) were infested with 18 M. 
sexta neonates (2 larvae/plant). These larvae were relocated to non-treated plants of the same 
genotype after every 24 h. (A) The mass of larvae (mean ± SE) was recorded on day 2, 4, 6 and 8. 
(B) Relative comparison of the leaf areas (mean ± SE) consumed by M. sexta on WT and 
irNaMPK4 plants after the first 24 h of M. sexta feeding. Asterisks indicate significant 
differences between values obtained from WT and irNaMPK4 plants (t-test; *, P < 0.05; **, P < 
0.01; ***, P < 0.001; N=18). 
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3.5.7. Silencing NaMPK4 does not affect N. attenuata’s resistance to the generalist herbivore 

Spodoptera littoralis 

To determine whether the NaMPK4 is also involved in the interactions between N. 

attenuata and other chewing herbivores, we performed feeding experiments with the 

polyphagous pest insect Spodoptera littoralis (Lepidoptera, Noctuidae). Larvae were grown on 

artificial diet for 10 d and afterwards placed on 20 replicate plants of each genotype. Larval mass 

was measured after 3, 5, 7 and 9 days. S. littoralis feeding on WT and irNaMPK4 plants 

performed equally well (Figure 25A). Thus, silencing NaMPK4 does not enhance the defense 

levels of N. attenuata against generalist S. littoralis. We collected S. littoralis OS (OSSL) from 

insects that were fed on N. attenuata WT plants for several days. NaMPK4 activity induced by 

W+OSSL treatment was analyzed with an immune-complex kinase assay (Figure 25B). In contrast 

to leaves treated with M. sexta OS, after W+OSSL treatment N. attenuata didn’t elevate NaMPK4 

activity. Because FACs in the OS of M. sexta is important for activation of NaMPK4, we 

measured the composition of these elicitors in M. sexta and S. littoralis OS. Levels of the most 

abundant FACs in S. littoralis OS were about 500-times lower than in M. sexta OS (Figure 25C). 

 

 

 

 

 

 

 

 

 

 

 

BA 



RESULTS 
 

57 
 

0

500

1000

1500

2000

2500

3000

N
o

rm
a

liz
e

d
 p

ea
k

 a
re

a

C16:0-Glu

C18:1-Glu

C18:2-Glu

C18:3-Gln

C18:3-Glu

OH-C16:0-Glu

OH-C18:1-Glu

OH-C18:2-Glu

OH-C18:3-Glu

 

 

 

 

 

 

 

 

 

 

Figure 25. Silencing NaMPK4 does not change plant resistance to generalist herbivore 
Spodoptera littoralis. 

(A) Larvae were grown on artificial diet for 10 d and then placed on 20 replicate plants of each 
genotype (1 larva each). Larval mass gain (mean ± SE) was measured 3, 5, 7, and 9 days after 
being transferred to the plants. (B) Immune-complex kinase assay of NaMPK4 activity after 
treatment with M. sexta or S. littoralis OS. WT plants were treated with W+OS, and samples 
were collected after 10 min. NaMPK4 were immunoprecipitated with the anti-NtMPK4 antibody, 
and its activity levels were assayed with myelin basic protein as a substrate. (C) FAC profiles in 
M. sexta and S. littoralis OS. Values are relative concentrations of the most abundant FACs of 
three pooled samples from 10 third- to fifth-instar larvae of each species that were feeding on 
wild-type N. attenuata plants. N-palmitoyl-L-Glu (C16:0-Glu), N-olyl-L-Glu (C18:1 Glu), N-
linoleoyl-L-Glu (C18:2 Glu), N-linolenoyl-L-Gln (C18:3-Gln), N-linolenoyl-LGlu (C18:3-Glu), 
N-hydroxypalmitoyl-L-Glu (OH-C16:0-Glu), N-hydroxyolyl-L-Glu (OH-C18:1 Glu), N-
hydroxylinoleoyl-L-Glu (OH-C18:2 Glu), N-hydroxylinolenoyl-LGlu (OH-C18:3-Glu). Note the 
changes in y-axis scale (500x) to better visualize less abundant FACs in S. littoralis OS. 
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4. Discussion 
 

MAPK signal transduction cascades have long been recognized as critical regulators in various 

aspects of cellular processes in all eukaryotes. However, their roles in plant development and 

stress responses remain largely unknown. Using a reverse genetic approach, we examined the 

functions of a MAPK, NaMPK4, in regulating various ecologically important traits in N. 

attenuata. Silencing NaMPK4 decreases plant size and biomass, but enhances photosynthetic rate 

and fecundity. We also show that NaMPK4 controls at least two aspects of ABA-induced 

responses: plant drought tolerance mediated by ABA-induced stomatal closure and ABA-

mediated seed germination inhibition. Moreover, NaMPK4 functions in pathogen defense likely 

by preventing bacteria from entering through stomata and suppressing bacterial amplification 

after they invade intercellular spaces. Furthermore, we show that NaMPK4 plays important roles 

in plant resistance to herbivores. 

NaMPK4 and plant fitness 

 Although NaMPK4 is phylogenetically related to AtMPK4, Arabidopsis mpk4 mutant and 

irNaMPK4 have distinct growth phenotypes. The Arabidopsis mpk4 mutant is severely dwarfed 

and this results partly from their highly elevated SA levels (Petersen et al., 2000); however under 

glasshouse conditions, which were optimized for N. attenuata growth (sufficient fertilization and 

lightning, automated watering, and minimized pest and pathogen stress), NaMPK4-silenced 

plants exhibit only slightly smaller rosette sizes and moderately shorter stalk lengths than do WT 

plants. NaMPK4 appears to modulate plant development in a SA-independent manner, since 

irNaMPK4 plants have the same levels of SA as WT plants and minimizing SA contents of 

irNaMPK4 plants by overexpressing NahG does not restore WT growth rates in irNaMPK4 

plants. This is consistent with the dwarf phenotype of NtMPK4-silenced N. tabacum plants, 

which also does not have altered basal SA levels, although the rosette sizes of NtMPK4-silenced 

N. tabacum plants are more severely reduced (Gomi et al., 2005), which might result from 

species-specific differences. However, given that irNaMPK4 transpires water more rapidly than 

does WT, the possibility that irNaMPK4 is always suffering from low levels of drought stress 

even under well-watered glasshouse condition, which leads to its reduced size, cannot be ruled 

out. 
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Importantly, silencing NaMPK4 considerably enhances photosynthetic rates. NtMPK4-

silenced tobacco has enlarged guard cells and decreased stomatal closure in response to ozone 

and CO2 (Gomi et al., 2005; Marten et al., 2008). Similarly, irNaMPK4 plants have increased 

stomatal sizes and greatly elevated stomatal conductance. In addition, the high chlorophyll 

contents of irNaMPK4 plants apparently also contributes to the increased photosynthetic rates 

especially at the later stage of development when substantial degradation of chlorophyll happens 

in WT plants. Chlorophyll content is one of the most important markers for plant senescence 

(Lim et al., 2007). The high chlorophyll contents in irNaMPK4 plants in their late stage of 

development suggest that irNaMPK4 plants have delayed senescence. The mechanism by which 

NaMPK4 negatively regulates senescence is unknown. Biosynthesis and degradation both control 

the levels of chlorophyll in plants. irNaMPK4 plants have marginally higher levels of chlorophyll 

contents when they are in the rosette stage; however, over time the levels of chlorophyll contents 

in irNaMPK4 plants become increasingly higher than in WT plants. Examining the rates of 

chlorophyll synthesis and degradation especially at later developmental stages will clarify the 

function of NaMPK4 in modulating the accumulation of chlorophyll. 

 When soil nitrogen content is favorable, photosynthetic rate is usually positively 

correlated with plant biomass (Fichtner et al., 1993; Richards, 2000; Mitra and Baldwin, 2008). 

However, despite having elevated photosynthetic rate, the above-ground biomass of irNaMPK4 

plants is 27% decreased. Seed production is a complex trait controlled at least by photosynthetic 

rate, sink strength, duration of photosynthesis, and plant architecture (Richards, 2000; Zhu et al., 

2010). Silencing NaMPK4 greatly increases the number of flowers which enlarges the 

reproductive sink capacity of irNaMPK4 plants. We speculate that this results from the apparent 

delayed senescence of these plants. Genetically modifying crop architecture, in particular, 

shortening stalk lengths was central to the improved seed yields during the “green revolution” 

(Khush, 2001; Zhu et al., 2010). It is conceivable that the semidwarf stature of irNaMPK4 plants 

also contributes to the increased yield of irNaMPK4 plants. Hence given their highly enhanced 

photosynthetic rate, sink capacity, and shortened stalks, it is not surprising that irNaMPK4 plants 

have greater yield of seeds than do WT plants.  
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NaMPK4 functions in ABA signaling 

Guard cells play critical roles in controlling water conservation in response to drought 

stress, rates of CO2 assimilation, and pathogen infections. Drought-treated irNaMPK4 plants 

accumulate high levels of ABA but maintain elevated transpiration rates and in epidermal peels 

guard cell have strongly impaired closure responses after ABA treatment, suggesting NaMPK4 

acts downstream of ABA in regulating drought stress-activated stomatal closure in Nicotiana 

attenuata. In contrast, silencing the orthologue of NaMPK4 in tobacco, NtMPK4, does not affect 

ABA-induced stomatal closure response (Gomi et al., 2005; Marten et al., 2008). The 

discrepancy might result from species-specific differences. 

Many proteins and small molecules are involved in ABA-induced stomatal closure 

(Schroeder et al., 2001; Desikan et al., 2004; Fan et al., 2004; Kim et al., 2010). ABA is 

perceived by a small family of receptor proteins, PYR/PYL/RCARs (Ma et al., 2009; Park et al., 

2009). Binding of these ABA-bound receptors to PP2Cs (a small group of kinase phosphatases) 

inhibits their phosphatase activity. This leads to increased activity of SnRK2s (targets of PP2C2) 

and thereby enhances the production of reactive oxygen species (ROS), which is important for 

activating downstream reactions and finally leading to stomatal closure (Kim et al., 2010). 

Several studies have demonstrated that in Arabidopsis MAPKs are involved in ABA signaling. 

AtMPK3 is important in various stress responses (Tena et al., 2001; Zhang and Klessig, 2001; 

Rodriguez et al., 2010); specifically silencing AtMPK3 in Arabidopsis guard cells also reduces 

H2O2-induced inhibition of stomatal opening or promotion of stomatal closure (Gudesblat et al., 

2007). Importantly, AtMPK9 and AtMPK12 are mainly localized in guard cells and plants 

silenced in both MAPKs have strong defects in ABA-induced stomatal closure, since AtMPK9 

and AtMPK12 act downstream of ROS to regulate the activity of anion channels (Jammes et al., 

2009). Similar to these MAPKs in Arabidopsis, NaMPK4 appears to be also located downstream 

of ROS to mediate ABA-induced stomatal closure. Notably, silencing NtMPK4 in tobacco 

compromises stomatal closure when plants are exposed to ozone (Gomi et al., 2005). Ozone 

exposure quickly induces ROS and several proteins that are important for ABA signaling are also 

required for ozone-induced stomatal closure (Vahisalu et al., 2010). This supports the hypothesis 

that in Nicotiana MPK4 is located downstream of H2O2 in promoting stomatal closure. Moreover, 

both knocking down NtMPK4 in N. tabacum and NaMPK4 in N. attenuata abolishes dark-

induced stomatal closure response (Marten et al., 2008). The S-type anion channel SLAC1 is 
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important for stomatal closure in response to ABA, H2O2, nitric oxide, Ca2+, and light/dark 

transitions (Vahisalu et al., 2008; Kim et al., 2010). Given that NtMPK4 is required for the 

activation of S-type anion channels during light-dark transitions (Marten et al., 2008), it is likely 

that both ABA/H2O2- and darkness-induced signaling pathways converge on NaMPK4 which 

modulates the activity of S-type anion channels and thus stomatal closure response. 

Apparently, NaMPK4 is not located in all the ABA-regulated pathways. NaMPK4 

functions in ABA-induced stomatal closure and germination, but ABA does not inhibit 

irNaMPK4 root growth. Similarly, compared with WT, irNaMPK4 seeds are less sensitive to 

salinity and MeJA during germination, but do not have a root growth phenotype in response to 

salt and MeJA. Since ABA signaling is largely overlapped with salt- and MeJA-activated 

pathways (Zhu, 2002; Acharya and Assmann, 2009), it is not surprising that irNaMPK4 shows 

similar phenotype when being treated with ABA, salt, and MeJA. Organ-specific analysis of 

NaMPK4 expression ruled out the possibility that NaMPK4 is not expressed in roots and 

therefore not involved in mediating ABA-inhibited root growth. Moreover, by growing WT and 

irNaMPK4 in the same pots, we minimized the differences in levels of drought stress resulting 

from differential stomatal control and examined whether NaMPK4 is involved in transcriptional 

regulation of drought-responsive genes. It seems that NaMPK4 is not involved in certain, if not 

all, the regulatory pathways that control ABA-induced transcriptional responses. Since whole 

leaves were used for transcriptional analyses, it is feasible that NaMPK4 regulates transcriptional 

changes specifically in guard cells but not in mesophyll cells. 

NaMPK4 and defense against bacterial pathogens 

 The important role of guard cell in resistance to the bacterial pathogen Pst DC3000 has 

been demonstrated in Arabidopsis: plants sense Pst DC3000 by perceiving flagellin and 

lipopolysaccharides and produce NO in guard cells, which leads to stomatal closure and blocks 

bacterium entry (Melotto et al., 2006). A striking difference was found between the Pst DC3000 

population in WT and irNaMPK4 after dipping leaves in bacterial suspensions. We detected 

almost no bacteria in WT but found more than 106 cfu/cm2 in irNaMPK4. In contrast, when 

bacteria enter plant tissue without the barrier of stomata (directly by infiltration), by 24 h Pst 

DC3000 amplified similarly in WT and irNaMPK4, whereas by 48 h the number of bacteria in 

irNaMPK4 plants was only about 25 fold higher than in WT. It is very likely that the stoma-

mediated defense is strongly compromised in irNaMPK4 plants. 
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Strikingly, silencing NaMPK4 does not influence bacterium-induced stomatal closure and 

even irNaMPK4 plants exhibit slightly faster closure speeds. These data strongly suggest that 

irNaMPK4 still possesses intact components of the signaling pathway which controls pathogen-

induced stomatal closure. In Arabidopsis, ROS is important for both ABA- and bacterial 

pathogen-induced stomatal closure (Kwak et al., 2003; Mersmann et al., 2010). The stomata of 

irNaMPK4 have highly decreased sensitivity to ABA but normal (or even slightly stronger) 

response to Pst DC3000. Given that the stomata closure of irNaMPK4 is partially abolished after 

H2O2 treatment, it is possible that the guard cells of N. attenuata respond to Pst DC3000 in a 

ROS-independent pathway. The species-specific difference between N. attenuata and 

Arabidopsis in response to surface-landed bacteria also includes that guard cells in both the 

epidermis and intact leaves of Arabidopsis react to pathogens, but only N. attenuata leaves and 

not epidermal peels close stomata after Pst DC3000 treatments. It seems that the N. attenuata 

guard cells require a signal derived from mesophyll cells to complete closure after bacterial 

elicitation.  

Although the greater transpiration rates of irNaMPK4 indicated that after applying 

bacteria on their leaf surfaces, the stomatal openings of irNaMPK4 remain larger than those of 

WT and this difference is maintained for least 1 h, it is unlikely that the greater stomatal apertures 

of irNaMPK4 solely account for the highly compromised defense against surface-landed Pst 

DC3000. Using an unknown mechanism, Pst DC3000 specifically move to open but not closed 

stomata of Arabidopsis and invade plants (Melotto et al., 2006). We speculate that the decreased 

levels of resistance to intercellular pathogens and probably more importantly, an unknown form 

of guard cell-mediated defense are abolished in irNaMPK4, which enhances the attraction of 

stomata to bacteria and therefore results in greater number of invading pathogens. Additionally or 

alternatively, highly increased survival rates of Pst DC3000 after entering the stomata of 

irNaMPK4 but before their amplify intercellular amplification can also not be ruled out.  

In Arabidopsis, AtMPK4 plays a negative role in resistance against Pst DC3000 in a SA-

dependent manner (Petersen et al., 2000). In contrast, silencing NaMPK4 reduces N. attenuata’s 

resistance to Pst DC3000. Analysis of Pst DC3000 population growth in WT and irNaMPK4 

plants with different SA levels (exogenously SA application and endogenously removal of SA by 

NahG expression) indicated that the resistance of N. attenuata to Pst DC3000 is not mediated by 

SA. In line with this, we found that NPR1, a protein required for many (but not all) SA-induced 
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defense responses (Durrant and Dong, 2004), is also not involved in N. attenuata’s resistance to 

Pst DC3000. Although SA and its signaling have long been known to be required for plant 

resistance to many biotrophic pathogens, SA-independent pathways have been uncovered in 

certain plant-pathogen interactions (Hauck et al., 2003; Zhang et al., 2003; Bartsch et al., 2006). 

The molecular basis of NaMPK4’s function in N. attenuata’s interaction with Pst DC3000 

deserves further study. 

NaMPK4 and plant resistance to herbivores 

 Thus far, only two MAPKs, SIPK and WIPK, were known to play important roles in 

plant-herbivore interactions (Kandoth et al., 2007; Wu et al., 2007). Silencing SIPK and WIPK 

greatly compromises M. sexta herbivory-induced JA and ethylene accumulation, which in turn 

reduces direct and indirect defenses (Kandoth et al., 2007; Wu et al., 2007; Meldau et al., 2009). 

Using bioassays, we demonstrate a surprising role of NaMPK4 in plant-herbivore interactions: 

silencing NaMPK4 greatly increases the defense levels of N. attenuata against M. sexta in a JA-

independent manner. 

It is likely that similar to SIPK and WIPK, NaMPK4 is also located downstream of the 

putative FAC receptors (Wu and Baldwin, 2010) and the binding of FACs to the FAC receptors 

triggers the activation of SIPK, WIPK, and NaMPK4, although these MAPKs appear to be 

located downstream of different MAPKKs: MEK2 phosphorylates SIPK and WIPK (Zhang and 

Liu, 2001), and SIPKK seems likely to be responsible for the phosphorylation of NaMPK4 

(Gomi et al., 2005) (Figure 26). Unlike SIPK and WIPK, which are activated by both herbivory 

and wounding, NaMPK4 is only activated by herbivory. Furthermore, the activation of NaMPK4 

after W+OS is very transient – 10 min after W+OS treatment the activity level of NaMPK4 is 

rapidly elevated 1 fold and this quickly drops to basal levels within 30 min. In comparison, after 

W+OS treatment SIPK activity increases many times and these elevated levels are maintained for 

more than 1 h (Wu et al., 2007). SIPK mediates W+OS-induced JA levels for longer than does 

NaMPK4 and this is consistent with the longer duration of the activation of SIPK (Wu et al., 

2007). Both SIPK and WIPK positively regulate the levels of JA after wounding or herbivory 

challenge (Wu et al., 2007); in contrast, NaMPK4 is a negative regulator of herbivory-induced JA 

accumulation (Figure 26). How these MAPKs alter the activity and/or substrate availability of JA 

biosynthetic enzymes merit further attention. Moreover, the biosynthesis of chlorophyll and the 

precursors of JA all take place in the chloroplasts. The altered chlorophyll contents and 
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herbivory-induced JA levels in irNaMPK4 plants suggest a connection between NaMPK4 and 

chloroplast function. 

Only one known direct defensive compound, TPI (a direct defense), had somewhat 

elevated levels in W+OS-induced irNaMPK4 plants and this is consistent with the relatively 

transient and moderate elevation of the W+OS-induced JA burst in irNaMPK4 plants. 

Furthermore, using irNaMPK4×irCOI1 plants, which are deficient in both NaMPK4 and COI1, 

we examined the contribution of JA signaling in irNaMPK4’s defense against M. sexta. 

Strikingly, in spite of highly compromised levels of all known anti-herbivore compounds, 

irNaMPK4×irCOI1 plants still retained their elevated resistance levels. Clearly, silencing 

NaMPK4 enhances certain direct defense(s) that is (are) independent of JA signaling (Figure 26). 

Given that silencing COI1 only reduces the resistance levels of irNaMPK4 plants to those of WT 

plants, this JA-independent defense in irNaMPK4 plants is remarkably effective against M. sexta. 

Moving M. sexta larvae to non-treated plants every 24 h, which avoids the full accumulation of 

JA-inducible defensive compounds, still resulted in reduced growth rates of M. sexta on 

irNaMPK4 plants, which suggests that the resistance is rapidly activated in irNaMPK4 plants, i.e. 

in less than 24 h, or is constitutively expressed. The identity of this JA-independent defense is 

still unclear. In N. attenuata, the biosynthesis of this (these) unknown defensive compound(s) 

must be highly suppressed by NaMPK4. Elucidating the biosynthesis of this defensive compound 

and ectopically expressing the components of its biosynthetic pathway in crops may be used for 

plant protection. 

In contrast, S. littoralis larvae feeding on NaMPK4-silenced plants gained similar weight 

to those on WT plants. If the NaMPK4-regulated defensive metabolite is constitutively expressed 

in NaMPK4-silenced plants, S. littoralis must be highly resistant to this compound. Alternatively, 

this defensive metabolite might not be biosynthesized after S. littoralis feeding. Analysis of the 

FAC contents in the oral secretions of S. littoralis larvae revealed that the FAC levels are about 

500-times lower than in M. sexta OS. The immunoblotting analysis showed that NaMPK4 is 

activated by FACs in the OS of M. sexta but not by the OS of S. littoralis. Given the critical role 

of FACs in eliciting herbivory-induced responses, including MAPK activation, phytohormone 

accumulation, and biosynthesis of defensive compounds, it is likely that the low contents of 

FACs in S. littoralis OS result in lack of recognition of herbivory in N. attenuata and thus S. 

littoralis larvae perform equally well on WT and irNaMPK4 plants. 
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Regulation of transcript accumulation and secondary metabolites in irNaMPK4 plants 

Silencing NtMPK4 in tobacco leads to decreased levels of wounding-induced PI-II 

transcripts, but AOS transcript levels were not altered (Gomi et al., 2005). irNaMPK4 plants 

exhibit increased levels of W+OS-induced TPI activity and TAB emission, while W+OS-induced 

levels of nicotine, caffeoylputrescine, and DTGs, which are also important herbivore resistance-

related compounds, are not mediated by NaMPK4. In Arabidopsis, AtMPK4 is required for the 

upregulation of JA-responsive genes, PDF1.2 and THI2.1, after MeJA treatment (Petersen et al., 

2000). Silencing NaMPK4 alters the transcript accumulation of some but not all genes that were 

examined after MeJA treatment. Similarly, after MeJA induction, among herbivore defense-

related compounds, only TPI showed increased levels in irNaMPK4 plants compared to WT 

plants. These findings demonstrate that NaMPK4 specifically modulates the levels of certain but 

not all herbivory- and jasmonate-induced transcripts and defensive secondary metabolites.  

The regulation of NaMPK4 on TAB, an indirect defense, is particularly intriguing. After 

wounding, irNaMPK4 plants emit about 1 fold higher amount of TAB. However, after W+OS 

treatment, the amount of TAB produced in irNaMPK4 plants is about 5 fold higher than in WT 

plants, which is similar to that produced in MeJA-induced WT and irNaMPK4 plants (Figure 

18A and 22B). Given that these remarkably elevated levels of TAB in W+OS-treated irNaMPK4 

plants are abolished when COI1 is also silenced, NaMPK4 appears to suppress herbivory-induced 

TAB biosynthesis in a JA signaling-dependent manner. We speculate that NaMPK4 is a 

suppressor of certain JA signaling-regulated transcription factors which activate the biosynthesis 

of TAB, and this suppression function of NaMPK4 is probably induced by W+OS, presumably 

the FAC components in M. sexta OS (Figure 26).  

Several WRKY transcription factors are known to be involved in MAPK signaling. They 

are direct phosphorylation targets of MAPKs or are transcriptionally regulated by MAPKs (Asai 

et al., 2002; Kim and Zhang, 2004; Menke et al., 2005). In N. attenuata, JA elicitation, the 

accumulation of TPI and α-bergamotene are regulated by two WRKY transcription factors, 

WRKY3 and WRKY6, as silenced lines do not induce these defenses after herbivory and 

consequently were highly vulnerable to herbivores (Skibbe et al., 2008). NaMPK4-silenced plants 

accumulate higher WRKY3 and WRKY6 transcript levels after W+OS; they elicit 50% more JA 

and have higher levels of TPI and 5-fold more α-bergamotene than WT plants. It is tempting to 

speculate that NaMPK4 controls the expression and/or activity of WRKY3 and WRKY6 or other  
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Figure 26. Summary of the function of NaMPK4 in N. attenuata’s resistance to herbivores and 
pathogens. 

After N. attenuata perceives FACs in M. sexta oral secretions, NaMPK4, SIPK, and WIPK are 
rapidly activated by upstream MAPKKs, which play negative and positive roles in regulating 
herbivory-induced accumulation of JA. Through the COI1-mediated JA signaling, levels of 
trypsin proteinase inhibitor (TPI), trans-α-bergamotene (TAB), nicotine, caffeoylputrescine, and 
diterpene glycosides (DTGs) are elevated. Importantly, NaMPK4 suppresses an unknown form of 
potent defense against M. sexta. Furthermore, NaMPK4 is required for N. attenuata’s resistance 
to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) through a pathway that is 
independent of SA signaling. (TFs = transcription factors) 
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transcription factors in N. attenuata and thereby plays a major role in plants defense against 

herbivores. Finding the direct substrates of NaMPK4, which are most probably transcription 

factors, will give further insight in to the mechanisms how NaMPK4 suppresses N. attenuata’s 

direct and indirect defense against M. sexta and strengthens plant resistance to Pst DC3000. 

Evolution of MPK4 

Both, phylogenetic analysis and their similar function in mediating plant development and 

stomatal aperture indicated that NaMPK4 and NtMPK4 are orthologues. Tobacco NtMPK4 is 

activated after wounding; however, NaMPK4 is not activated by wounding but only by OS-

elicitation. It seems likely that N. tabacum and N. attenuata have evolved different responses to 

wounding which result in different patterns of regulation of MPK4 activity. Studying the function 

of the orthologues of NaMPK4 and NtMPK4 in other Nicotiana species will provide valuable 

insight into the evolution of MPK4 and its regulatory networks in Nicotiana. 

Compared with Arabidopsis MAPKs, NaMPK4 has the highest similarities to AtMPK4 

and AtMPK11. Although AtMPK4 is mainly localized in guard cells (Petersen et al., 2000), the 

drastically different phenotypes of the Arabidopsis mpk4 mutant from those of irNaMPK4 

strongly suggest that NaMPK4 has a distinct function in N. attenuata. Recent evidence indicates 

that AtMPK4 is important for cytokinesis and microtubule organization in Arabidopsis, which at 

least accounts for the highly retarded growth phenotype of mpk4 mutant (Beck et al., 2010; 

Kosetsu et al., 2010). Given the very mild growth phenotype of irNaMPK4, it is very unlikely 

that NaMPK4 also functions in cytokinesis and microtubule organization. The phenotypic 

differences between irNaMPK4 and mpk4 mutant seem not to result from differences in degrees 

of gene silencing (knock-down and knock-out), since silencing AtMPK4 in Arabidopsis using an 

RNAi vector also generated extremely dwarf T1 plants which were morphologically very similar 

to mpk4 and were mostly sterile like mpk4 (data now shown). NaMPK4 is not functionally 

similar to AtMPK11 either: mpk11 mutant has no detectable growth abnormalities compared with 

WT and our data indicate that AtMPK11 is not involved in drought and pathogen resistance. 

Although double mutant mpk4 mpk11 has more severe growth phenotype than does single mutant 

mpk4, the exact function of AtMPK11 is unknown (Kosetsu et al., 2010).  

Notably, although having somewhat lower identity to NaMPK4 (77%) (Figure 3A), 

AtMPK12 is also important for ABA- and ROS-induced stomatal closure response (Jammes et 
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al., 2009). Similar inconsistency between functions and sequence similarities can also be seen 

between AtMPK9 and AtMPK12: AtMPK9 belongs to MAPK subgroup D, while AtMPK12 is in 

subgroup B; however, these two proteins show functional redundancy in controlling guard cells 

(MAPK group, 2002; Jammes et al., 2009). It is tempting to hypothesize that the real homologues 

of NaMPK4 in Arabidopsis are AtMPK9 and AtMPK12. This hypothesis should be tested at least 

by measuring the defense levels of mpk9, mpk12, and mpk9 mpk12 double mutant against Pst 

DC3000 and by examining whether NaMPK4 complement the function of AtMPK9 and 

AtMPK12 in ABA- and H2O2-induced stomatal closure and pathogen defense (if mpk9, mpk12, 

or mpk9 mpk12 has decreased resistance to pathogens). Sequence analyses and functional studies 

of the homologues of MPK4 in other plant species are needed to further understand the driving 

force underlying the evolution of MPK4.



SUMMARY 
 

69 
 

5. Summary 
 

MAPKs have been intensively studied in yeast and mammals. However, the functions of 

MAPKs in plants remain largely unknown. In this study, we show silencing a MAPK, NaMPK4, 

in a wild tobacco species, N. attenuata, enhances plant fitness and elevates defense levels against 

herbivores, but compromises resistance to pathogens and drought stress. NaMPK4 regulates 

certain (but not all) ABA-, salt-, and MeJA-induced responses: it is required for the inhibitory 

effect of these compounds in germination, but is not involved these compounds’ suppression of 

root elongation or in the regulation of gene expression after drought or MeJA treatment. 

Importantly, NaMPK4 acts downstream of ABA-induced H2O2 to promote stomatal closure and 

is also very likely to be required for stoma-mediated pathogen defense. NaMPK4 is also 

specifically activated by FACs and negatively mediates a JA-independent defense pathway 

against insect herbivore, M. sexta. These data highlight the important function of NaMPK4 in 

mediating various ecologically important traits in N. attenuata. Large scale transcriptome 

analysis and phosphorylation target identification will shed light on the molecular basis of 

NaMPK4’s function in plant development and resistance to biotic and abiotic stresses. Studying 

the performance of irNaMPK4 plants in N. attenuata’s natural habitat, where these plants are 

challenged with a full spectrum of biotic and abiotic factors, will provide further insight into the 

ecological and evolutionary significance of NaMPK4. Furthermore, we propose that homologues 

of MPK4 in agriculturally important seed crops may be potential targets for genetically 

modification to increase seed yield and resistance to herbivores and pathogens.  
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6. Zusammenfassung 
 

Mitogen-aktivierte Protein Kinasen (MAPK) sind essentielle Regulatoren vieler 

Wachstumsvorgänge und stressinduzierter Reaktionen in fast allen Eukaryoten. Trotzdem ist, 

speziell in Pflanzen, die Regulation der MAPK und nachgeschalteter Signalwege noch 

größtenteils unerforscht. In dieser Arbeit habe ich die Funktion einer MAPK, genannt NaMPK4, 

in wildem Tabak (Nicotiana attenuata) untersucht. Dazu wurden transgene Pflanzen hergestellt, 

in denen die Transkription des NaMPK4 Gens durch einen RNA-Interferenzmechanismus 

unterdrückt ist. Anhand dieser Pflanzen habe ich den Einfluss des MPK4 Gens auf verschiedene 

Charakteristika wie beispielsweise Wachstum, Samenproduktion und die Verteidigung der 

Pflanzen gegen Herbivoren (Manduca sexta und Spodoptera littoralis) und Pathogene 

(Pseudomonas syringae pv. tomato DC3000) sowie die Resistenz der Pflanzen gegen 

Trockenstress untersucht. Unter Gewächshausbedingungen haben Pflanzen mit ausgeschaltetem 

NaMPK4 Gen kleinere Rosettendurchmesser und eine verringerte Wuchshöhe, dennoch aber 

höhere Photosynthesewerte und gesteigerte Samenproduktion. Die gentechnisch veränderten 

Pflanzen sind weniger resistent gegen Trockenstress und unsere Ergebnisse legen die Vermutung 

nahe, dass NaMPK4 in der Stress-induzierten Signalkaskade dem Hormon Abscisinsäure und 

dem Signalmolekül Wasserstoffperoxid nachgeschaltet ist und die Schließung der Spaltöffnungen 

der Blätter bei Trockenheit und auch bei Pathogenbefall kontrolliert. Das NaMPK4 auch 

Bestandteil der Verteidigung der Pflanze gegen Pathogene ist, zeigt sich insbesondere nach 

Pathogen Infiltration direkt in die Blätter. Pseudomonas syringae pv. tomato DC3000 vermehrt 

sich signifikant schneller in transgenen Pflanzen und diese im Vergleich zum Wildtyp veränderte 

Immunreaktion ist unabhängig von Salicylsäure und NPR1, zweier Hauptregulatoren der 

Pflanzenverteidigung in Arabidopsis. 

NaMPK4 spielt auch eine wichtige Rolle in der Verteidigung der Pflanzen gegen Herbivoren-

befall. Dabei wird NaMPK4 nicht durch die bloße mechanische Verwundung der Blätter aktiviert 

sondern durch Fettsäure-Aminosäure Verbindungen (FAC) im oralen Raupensekret und ist 

deshalb Teil der spezifischen Verteidigung der Pflanze gegen ihre Fraßfeinde. Pflanzen mit 

ausgeschaltetem NaMPK4 Gen sind resistenter gegen Manduca sexta Raupen und diese Resistenz 

ist zum großen Teil unabhängig von der Jasmonsäure-induzierten Immunantwort der Pflanze, 
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welche normalerweise die Verteidigung gegen Herbivoren reguliert. Damit ist NaMPK4 die erste 

bekannte MAPK die die Verteidigung gegen Herbivoren negativ reguliert. Im Gegensatz zu den 

Reaktionen auf M. sexta ist NaMPK4 nicht in die Verteidigung gegen den Generalisten S. 

littoralis involviert, vermutlich aufgrund der geringen FAC Konzentration in deren Oralsekret. 

Die in dieser Arbeit gewonnenen Erkenntnisse zeigen die zentrale Rolle die NaMPK4 in 

Wachstum und Verteidigung des wilden Tabaks spielt. NaMPK4-homologe Gene in 

landwirtschaftlich bedeutsamen Pflanzen könnten zukünftige Ziele der Gentechnik sein um zum 

Beispiel deren Ertrag zu steigern und die Resistenz gegen Schädlinge zu verbessern.
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7. Supplemental Data 
Supplemental Table 1 Sequences of primers 

Primers  Sequences (5’-3’)* Purposes 

NaMPK4-1 GCGGCGCTGCAGGATCATGACAATGT
GATTGCC 

Preparation of pRESC5-MPK4 

NaMPK4-2 GCGGCGCCATGGGGTGCCCGATACC
ACCG 

Preparation of pRESC5-MPK4 

NaMPK4-3 GCGGCGGAGCTCGATCATGACAATGT
GATTGCC 

Preparation of pRESC5-MPK4 

NaMPK4-4 GCGGCGCTCGAGGGTGCCCGATACC
ACCG 

Preparation of pRESC5-MPK4 

NaMPK4-5 TAGGAGCAACTCCGGTGCC q-PCR of NaMPK4  
NaMPK4-6 GCAAGGACAACATCTGAGACAGAT q-PCR of NaMPK4  
NCED1-1 ACAGCCGACCCACGTGTCCA q-PCR of NaNCED1 
NCED1-2 CGACAAGCGTAACTTGCGGAGC q-PCR of NaNCED1 
OSM1-1 CTGCGACTATCGAGGTCCGAAAC q-PCR of NaOSM1 
OSM1-2 GTACCTCGTGGTGCATTGATCAC q-PCR of NaOSM1 
TAS14-1 TGGGTGGAGAGTATGGAACC q-PCR of NaTAS14 
TAS14-2 CCACCTTCACCATCATCCTC q-PCR of NaTAS14 
HD20-1 CCGAGAAAGAAGGTGGACAGTATTG q-PCR of NaHD20 
HD20-2 AGCCGAATAATCAGCCTTTATGC q-PCR of NaHD20 
Actin2-1 GGTCGTACCACCGGTATTGTG q-PCR of Actin2  
Actin2-2 GTCAAGACGGAGAATGGCATG q-PCR of Actin2  
AtMPK11-1-
LP 

TGCTCGAAATCAAAATGGAAC mpk11 homozygosity (border 
sequence) 

AtMPK11-1-
RP 

AATAAGACCACCTCAGCCAGAC mpk11 homozygosity (border 
sequence) 

Salk_LBb1.3 ATTTTGCCGATTTCGGAAC mpk11 homozygosity (T-DNA 
sequence) 

NaWRKY3-1 CAGGATATGCAAATTCAGAGGATTC q-PCR of NaWRKY3  
NaWRKY3-2 ATTCAATTCAGCAGAGCAATGTG q-PCR of NaWRKY3  
NaWRKY6-1 ACAAAACAAAGATGAAGTTCCAAAG q-PCR of NaWRKY6  
NaWRKY6-2 GGAGAAGCTGGTGATGAAGATG q-PCR of NaWRKY6  
TPI-1 TCAGGAGATAGTAAATATGGCTGTTCA q-PCR of TPI  
TPI-2 ATCTGCATGTTCCACATTGCTTA q-PCR of TPI 
LOX3-1 GGCAGTGAAATTCAAAGTAAGAGC q-PCR of LOX3  
LOX3-2 CCCAAAATTTGAATCCACAACA q-PCR of LOX3  
TD-1 TAAGGCATTTGATGGGAGGC q-PCR of TD  
TD-2 TCTCCCTGTTCACGATAATGGAA q-PCR of TD 
OPR3-1 ATGCCAGATGGAACTCATGCTATTT q-PCR of OPR3  
OPR3-2 TATGAATTTGCAACGGTTGGCTAGT q-PCR of OPR3  
AOC-1 ATCGTACTTGACTTACGAGGATACT q-PCR of AOC  
AOC-2 TCACAAGCTTTAGCTTCAGGTGCTT q-PCR of AOC  

* Nucleotides underlined in primers NaMPK4-1, NaMPK4-2, NaMPK4-3, and NaMPK4-4 are 

Pst I, Nco I, Sac I, and Xho I sites, respectively.
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